LES REACTEURS DE PUISSANCE DANS LE MONDE

Liste des réacteurs de puissance en service, en construction et en projet dans le monde en avril 1965.

Nom	Emplacement .	Filière	Puissance netteMW(e)	Date d'entrée en divergence
1) Allemagne (Ré	publique fédéra	le d*)	· · · · · · · · · · · · · · · · · · ·	
KAHL	Kahl/Main	H ₂ O bouill., 2,6 % U	15	nov. 1960
2) Belgique				
BR-3	Mol	H ₂ O s/s press., 3,7 + 4,4% U	10,5	août 1962
3) Canada				
NPD	Des Joachims	D ₂ O s/s press., U nat.	19,3	avril 196
4) Etats-Unis d'	Améri que			
EBWR	Lemont	H ₂ O bouill., 1,5 + 90 % U	4,5	déc. 1956
SM-1	Fort Belvoir	H ₂ O s/s press., 93 % U	1,9	avril 195
SRE	Santa Susana	graphite-sodium, 90 % U + Th	5,1	avril 195
VBWR	Pleasanton	H ₂ O bouill., 2,5 % U	arrêté en 1963	août 1957
SHIPPINGPORT	Shippingport	H ₂ O s/s press., U nat. + 93 %	60	déc. 1957
DRESDEN	Dresden	H ₂ O bouill., 1,5% U	208	déc. 1959
YANKEE	Rowe	H ₂ O s/s press., 3,4% U	175	août 1960
PM-2A	Greenland	H ₂ O s/s press., 93 % U	1,5	oct. 1960
BORAX-5	Idaho Falls	surchauffe nucl., 5 + 93 % U	2,7	fév. 1962
PM-1	Sundance	H ₂ O s/s press., 93% U	1,0	fév. 1962
PM-3A	Antarctica	H ₂ O s/s press., 93% U	1,5	mars 196
SM-1A	Alaska	H ₂ O s/s press., 93% U	1,7	mars 196
SAXTON	Saxton	H ₂ O s/s press., 5,7% U	3, 3	avril 196

Nom	Emplacement	rillere	Puissance netteMW(e)	Date d'entrée en divergence
INDIAN POINT	Indian Point	H ₂ O s/s press., 93% U + Th	255	août 1962
HNPF	Hallam	sodium-graphite, 3,6 % U	75	août 1962
BIG ROCK POINT	Charlevoix	H ₂ O bouill., 3,2% U	75	sept. 196
ERR	Elk River	H ₂ O bouill., 93% U + Th	20	nov. 1962
HUMBOLDT BAY	Eureka	H ₂ O bouill., 2.6% U	50	fév. 1963
CVTR	Ралг	D ₂ O s/s press., 1,5 + 2,0 % U	17	mars 1963
PNPF	Piqua	fluide organique, 1,9 % U	11,4	juin 1963
ENRICO FERMI	Lagoona Beach	surgén. rap., 25 % + U nat.	60,1	août 1963
EBR-2	Idaho Falls	surgén. rap., 49 % + U nat., Na	16,5	nov. 1963
NPR	Richland	0,9% U, graphite, H ₂ O	776	děc. 196 ^a
PATHFINDER	Sioux Falls	surchauffe nucl., 2.2 + 93 % U	58,5	nov. 1964
BONUS	Punta Higuera	surchauffe nucl., U nat. + 3% U	16,3	avril 1964
5) France				
G-1	Marcoule	U nat., graphite, air	1,7	janv. 1956
G-2 (G-3)	Marcoule	U nat., graphite, CC	•	juil. 1958 juin 1959
EDF-1	Chinon	U nat., graphite, CC	, 68	sept. 196
EDF-2	Chinon	U nat., graphite, CC	_	août 1964
6) Italie				
LATINA	Latina	U nat., graphite, CO	200	déc. 1962
SENN	Sessa Aurunca	H ₂ O bouilI., 2% U	150	juin 1963
SELNI	Trino Vercelleze	H ₂ O s/s press., 2,6% U	270	juin 1964
7) Japon				
JPDR	Tokai-Mura	H ₂ O bouill., 2,5% U	11,7	août 1963
8) Royaume-Uni				
CALDER HALL	Calder Hall	U nat., graphite, CO	0 ₂ 4 × 45	mai 1956/ déc. 1958

a) Réacteur entré en divergence; la production d'énergie est prévue pour fin 1965 ou début 1966.

Nom	Emplacement	Filière		ate d'entrée n divergence
CHAPELCROSS	Chapelcross	U nat., graphite,	4 × 45	oct. 1958/ déc. 1959
DFR	Dounreay	surgén. rap., 45,5% U, NaK	15	nov. 1959
BERKELEY	Berkeley	U nat., graphite,	2 × 138	août 1961/ mars 1962
BRADWELL	Bradwell	U nat., graphite, CO ₂	2 × 150	août 1961/ avril 1962
AGR	Windscale	2,5%, graphite, CO	27,3	août 1962
HUNTERSTON	Hunterston	U nat., graphite, CO ₂	2 × 170	sept. 1963, avril 1964
HINKLEY POINT	Hinkley Point	U nat., graphite,	2 × 250	mai 1964/ fin 1964
TRAWSFYNYDD	Trawsfynydd	U nat., graphite, CO ₂	2 × 250	sept. 1964, déc. 1964
9) Suède				
R-3/ADAM	Agesta	D ₂ O s/s press., U nat.	9	juil. 1963
10) Union des Ré	publiques socio	distes soviétiques		
APS .	Obninsk	5% U, graphite, H ₂ O	5	mai 1954
SIBERIAN	Troitsk	U nat., graphite, H ₂ O	600 (6 × 100) sept. 1958 déc. 1962
OURAL I	Béloiarsk	surchauffe nucl., 1,3 % U	94	sept. 1963
WWER	Novo Voronej	H ₂ O s/s press., 1,5% U	196	déc. 1963
TES-3	Obninsk	H ₂ O s/s press., UO ₂ enr.	1,5	1961
ARBUS	Mélékés	fluide organique, 36 % UAL ₄ + Al	0,75	janv. 1963
REACTEUR EN CONST			-	
Nom	Emplacement	Filière		Date d'entrée en divergence
1) Allemagne (R	épublique fédér	ale d')		
AVR	Juliers	à éléments sphé- riques, 20 % U, graphite, He	13, 2	1965
KRB	Grundrem - mingen	H ₂ O bouill., U enr.	237	1966

Nom	Emplacement	Filière	Puissance netteMW(e)	Date d'entrée en divergence
MZFR	Karlsruhe	U nat., D ₂ O s/s press.	50	1965
KWL	Lingen	H ₂ O bouill., surchauffe non nucléaire, UO ₂ enr.	250	1968
KBWP	Obringheim	H ₂ O s/s press., 3% UO ₂	283	1968
2) Belgique				
SENA	Chooz b)	H ₂ O s/s press., 3,1 % U	266	1965
3) Canada				
CANDU	Douglas Point	D ₂ O s/s press., U nat.	200	1965
4) Espagne				
ZORITA DE LOS CANES	Zorita de los Canes	H ₂ O s/s press.	140	1968
5) Etats-Unis d'A	Améri que			
EGCR	Oak Ridge	2,5 % U, graphite, He	21,9	1965
HTGR	Peach Bottom		40	1965
LACBWR	Genoa	3,4 % U, H ₂ O bouill	50	1965
SAN ONOFRE	Camp Pendleton	3,6 % U, H ₂ O s/s press.	375	1967
CONNECTICUT YANKEE	Haddam Neck	_	462	1967
JERSEY CENTRAL	Oyster Creek	•	515	1968
6) France				
EDF-3	Chinon	U nat., graphite,	375	1965
EL-4	Monts d'Arrée	U renr., D ₂ O, CO ₂	80	1966
EDF-4	Saint Laurent des Eaux	U nat., graphite, CO ₂	480	1967

b) L'électricité produite est partagée, à égalité, entre la France et la Belgique; le réacteur se trouve en territoire français.

Nom	Emplacement		Puissance netteMW(e)	Date d'entrée en divergence
7) Inde				
TARAPURA	Tarapura	H ₂ O bouill.	2 × 190	1967
8) Japon				
TOKAI-MURA	Tokai-Mura	U nat., graphite, CO ₂	158	1965
9) Pays-Bas				
GKN	Dodewaard	BWR («cycle direct»)	47	1968
10) Royaume-Ui	ni			
DUNGENESS	Dungeness	U nat., graphite,	2 × 275	1964/65
SIZEWELL	Sizewell	U nat., graphite,	2 × 289	1965
OLDBURY	Oldbury	U nat., graphite,	2 × 300	1966
SCHWR	Winfrith	1,4% U, D ₂ O, H ₂ O bouill.	93 .	1967
WYLFA	Wylfa	U nat., graphite, CO ₂	2 × 590	1968/69
11) Suède				
R-4/EVA	Marviken	D ₂ O bouill., U na	t. 200	1968
12) Suisse				
LUCENS	Lucens	1% U, D ₂ O, CO ₂	7,5	1965
13) Tchécoslov	aqui e			
HWGCR	Bohunice	U nat., D ₂ O, CO ₂	150	1970
14) Union des l	Républiques soci	alistes soviétiques		
VK-50	Mélékés	H ₂ O bouill., 1,5% U	50 - 75	1965
WWER-II	Novo Voronej	H ₂ O s/s press., 1,5% U	365	1965
OURAL II	Bélotarsk	surchauffe nucl., 1,3 % U	200	1965
BN-350	Chevchenko (Mer caspienne	surgén. rap., e) 23 % UO ₂ + Pu, N	350 a	

POUR UN MEILLEUR RENDEMENT DES REACTEURS DE PUISSANCE

Les méthodes d'essais non destructifs peuvent ouvrir la voie à des améliorations de la conception et du rendement des centrales nucléaires dans un avenir immédiat. L'expansion de ces méthodes et de leurs applications industrielles a été envisagée au Colloque sur les essais non destructifs en technologie nucléaire, tenu à Bucarest, du 17 au 21 mai 1965, sous les auspices de l'Agence.

Les essais non destructifs, notamment par radiographie ou par ultrasons, présentent de nombreux avantages; ils évitent le prélèvement d'échantillons des matières à examiner ou à contrôler et il est même souvent possible de faire des essais précis sans aucun contact avec la matière. Ils servent à déceler les défauts, à vérifier les dimensions, par exemple les épaisseurs de tubes, à déterminer la distribution de l'uranium dans un élément combustible, etc.

Les recherches en vue d'augmenter le rendement d'un réacteur portent notamment sur l'élévation de la température du coeur. Les réacteurs à eau bouillante actuels produisent 28 kilowatts thermiques par décimètre cube de coeur: on vourdrait porter ce chiffre à 45 ou 60 kilowatts. Cela implique le transfert constant et régulier d'une grande quantité de chaleur, sans la moindre défaillance des matériaux et des pièces constitutives. Une autre solution consisterait à augmenter la combustion massique des éléments combustibles. Les premiers réacteurs gaz-graphite ont été construits en prenant pour hypothèse une combustion massique de 3000 MW j/t, mais on offre déjà du combustible avec une combustion garantie de 4000 MW j/t; on espère atteindre 4500 MW j/t avec des éléments combustibles perfectionnés. Là encore, aucune rupture ou distorsion ne sera permise.

Les participants au colloque ont souligné que les méthodes d'essais non destructifs ne se bornent pas à la détection des défauts. Elles peuvent fournir de précieuses indications sur la structure et l'état des matières et sur les effets des procédés de fabrication. Tout d'abord, les essais non destructifs en technologie nucléaire ont servi essentiellement dans la recherche et le développement; mais le colloque a clairement montré qu'ils sont maintenant appliqués à l'échelle industrielle. Plusieurs mémoires étaient consacrés à l'automatisation. Certaines applications de l'automatisation intéressent des industries non nucléaires.

M. Ballard (Etats-Unis) a prédit une grande expansion des applications des méthodes d'essais non destructifs, notamment au stade des études de matériaux et de pièces. M. Van der Linde (Pays-Bas) a décrit un réacteur marin pour la propulsion d'un navire de 65000 tonnes; il développera 22000 W à l'arbre; le coeur devra fonctionner pendant 1200 jours à pleine puissance et la plupart des barreaux de combustibles auront une température de 335 à 345° C. Les gaines en Zircaloy devront résister dans de telles conditions; un essai aux ultrasons a montré que les gaines fournies par

un fabricant étaient très supérieures à celles de deux concurrents. Bien d'autres exemples ont été donnés pour montrer le rôle de plus en plus important des essais non destructifs dans le contrôle de la qualité et l'amélioration des processus de fabrication.