

Vulnerability Assessment for Sabotage during Nuclear Transport in Germany

Marita Döhler, GRS

13.-17.11.2017

International Conference on Physical Protection of Nuclear Material and Nuclear Facilities 2017, Vienna

Contents

- Motivation: Vulnerability Assessment for Sabotage during Nuclear Transport in Germany
- Assessment of Potential Consequences of Sabotage during Nuclear Transport
- Challenges
- Summary

Nuclear Security Series No. 13, Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities:

IAEA Nuclear Security Series No. 13

Recommendations

Nuclear Security Recommendations on Physical Protection of Nuclear Material and Nuclear Facilities (INFCIRC/225/Revision 5)

 Radioactive material has to be protected against unauthorized removal since it could have significant consequences if dispersed or used otherwise for a malicious act

 ...the State should define protection requirements that correspond to the level of potential radiological consequences.

GRS

Motivation

Nuclear Security Series No. 26-G, Implementing Guide, Security of Nuclear Material in Transport:

Material	Form	Category I	Category II	Category III ^a
1. Plutonium ^b	Unirradiated ^e	2 kg or more	Less than 2 kg but more than 500 g	500 g or less but more than 15 g
2. Uranium-235	Unirradiated ^e			
	 Uranium enriched to 20% ²³⁵U or more 	5 kg or more	Less than 5 kg but more than 1 kg	1 kg or less but more than 15 g
	 Uranium enriched to 10% ²³⁵U but less than 20% ²³⁵U 	n.a. ^d	10 kg or more	Less than 10 kg but more than 1 kg
	 Uranium enriched above natural but less than 10% ²³⁵U 	n.a. ^d	n.a. ^d	¹⁰ Sabotage leads to
3. Uranium-233	Unirradiated ^e	2 kg or more	Less than 2 kg but more than 500 g	unaccaptable radiologica
4. Irradiated fuel			Depleted o	
(The categorization of irradiated fuel in this table is based on international transport considerations. The State may assign a different category for domestic use, storage and transport, taking all relevant factors into account)			uranium, thorrown low enriched fu (less than 10% fissile content) ^{e, f}	"Sabotage-relevant (FS)"

Source: Table 1 of Ref. [2].

- ^a Quantities not falling in Category III, natural uranium, depleted uranium or thorium should be protected at least in accordance with prudent management practice.
- ^b All plutonium except that with isotopic concentration exceeding 80% in ²³⁸Pu.

Nuclear Material Transport categorized as Cat I FS Cat II FS

Cat III FS

-> additional requirements:

- prevent unacceptable consequences

- ...

Within licensing process...

... the applicant has to (i. a.)

- categorize the Nuclear Material Transport,
- to prove that there are no unacceptable radiological consequences as a result of a sabotage

... the Competent Authority proves with the help of third party experts whether the requirements are fulfilled

For Categorization and for proving effectiveness of additional measures: Assessing radiological consequences

First step: Categorization regarding Sabotage

- Sabotage affects cask
- No additional structures are considered
- No measures

Assessment:

- Damage Pattern of:
 - Cask
 - Inventory
 - Airborne Release Fraction (ARF) of inventory (respirable aerosols)
 - Aerosol transport process from the inside of the cask to the environment

Second step:

- Determination of dispersion of respirable particles
- Dose calculation

Definition of boundary conditions:

- What are unacceptable radiological consequences?
- Dose for one person or a group?
- Distance?
- Locations?
- Exposure for which period?
- Velocity of wind?
- Rain?

. . .

If the Nuclear Material Transport is categorized as "sabotage-relevant" (FS) additional measures have to be added.

One requirement: Unacceptable radiological consequences have to be prevented.

Assessment starts again taking into account all measures

Two main questions:

- What could be suitable measures?
- How can the effectiveness of the systems be proved?

What could be suitable measures?

- Add as much material around the cask that no sabotage act leads to any radiological consequences
 - Passive measure
 - Heavy
 - Large-sized
 - Heat removal
 - • •
 - Add less material around the cask to mitigate the damage of cask and inventory and with this the release of particles
 - Passive measure
 - Maybe heavy
 - Maybe large-sized
 - Sufficiency

What could be suitable measures?

- Add active systems like sprinkling systems/foams to wash out particles
 - Active system
 - Need of triggering
 - Efficiency
 - • •

How can the effectiveness of the systems be proved?

- Performing experiments
- Numerical simulations
- Inspections of implemented measures

Summary

- Revision of german DBT for Nuclear Material Transports: Major effects with respect to sabotage
- Revision of guideline (draft): New categorization regarding sabotage followed by new requirements
- Precise assessment of radiological consequences needed
- Challenges resulting from the new regulations (suitable measures, prove efficiency)

Thanks for your attention!