

Exceptional service in the national interest

Improvements in Transportation Security Analysis from a Complex Risk Mitigation Framework for the Security of International Spent Nuclear Fuel Transportation

Adam D. Williams

Global Security Research & Analysis Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525. SAND2017-11978C

Outline

- Introduction
- Risk Complexity & International SNF Transportation
 - A New Conceptual Approach for Risk Complexity
 - Novel Analysis Tools for Risk Complexity
- Lessons from Learned from Risk Complexity in International SNF Transportation
- Implications for Transportation Security
- Summary & Conclusions

Introduction

- The nuclear fuel cycle faces more complex risks from a growing & evolving operational environment
 - Interdependencies between security, safety & safeguards (3S) risks & dynamic operational environments challenge traditional risk analysis methods
- Exemplified in the multi-modal or multi-jurisdictional complexity of the international transport of spent nuclear fuel (SNF)
 - 1996 shipment of HEU from Colombia to U.S.
 - Agreed shipment of SNF from Iran to Russia

Introduction

- According to Olli Heinonen (2017):
 - 'Safeguards, security, and safety are commonly seen as separate areas in nuclear governance. While there are technical and legal reasons to justify this, they also co-exist and are mutually reinforcing. Each has a synergetic effect on the other...'
- Recently completed LDRD research at Sandia National Laboratories explored integrated safety, security & safeguards
 (3S) frameworks for managing risk complexity in international SNF transportation
 - The results of this study present intriguing implications reducing transportation security risk(s) against 21st century threats

- A new concept of risk that, for international SNF transportation, that includes
 - The traditional definitions of risk associated with *security*, safety & safeguards
 - Social and political contexts/dynamics that may prevent the completion of the desired safety, security and safeguards objectives
 - The emergence of risk resulting from interactions among security, safety, and safeguards risks and mitigations

- Incorporating complexity & systems theories into traditional engineering approaches to risk introduces:
 - Interdependence: how interactions influence desired functions
 - **Emergence**: how system level behavior results from interactions
 - **Hierarchy**: how higher levels constrain the behaviors of lower levels
- The result: a state-space description of complex risk where
 - (T) = total state space
 - (D) = some subset of (T) representing all desirable system states
 - (T-D)= a complementary subset representing the undesirable, or 'risky,' states
- All else equal, complex risk is manipulating the technical/social components of a system to stay in the desirable system states

- Such systems may exist at *different places* in the desirable space at *different points in time*
 - Complex risk is dynamic and also includes all system states between beginning & end points
 - The requirements that define the desirable space are implemented in different social, political, and technical contexts.
- Therefore, while Figure (a) may appear to have relatively low risk at Nodes A and B, Figure (b) illustrates how there are multiples points that approach the boundary of the desirable space

Dynamic Probabilistic Risk Assessment (DPRA)

- Bottom-up & deterministic
- Uses Dynamic Event Trees (DETs) for systematic and automated assessment of possible scenarios arising from uncertainties
- Models/tools used:
 - Safety: RADTRAN
 - Security: STAGE
 - Safeguards: **PRCALC**, Markov Chain model of safeguards from BNL

System-Theoretic Process Analysis (STPA)

- Top-down & based on system-level behaviors
- Based on abstracting real complex system operations into hierarchical control structures & functional control loops
- Two Primary Steps:
 - **'Step One'**: identify possible violations of control actions that lead to system states of higher risk
 - 'Step Two': derive specific scenarios that could cause these theorized violations to occur

Lessons from SNF Transportation

- Key benefits of the state-space descriptions of risk include:
 - Improved understanding over traditional approaches to transportation security risk
 - Enhanced understanding & ability to manage increasing risk complexity
 - Distinguishing sources of risk that can be controlled (i.e., defining & high level requirements) from those that cannot (i.e., inherent risk of shipping)
 - Identifying sources of risk variability (e.g., those from implementation vs. those regardless of implementation)

Attributes	Traditional	Complex Risk
	Characterization	Characterization
	(e.g., security in	
	isolation)	
Risk Definition	Probabilistic ability to	Emerges from potential system
	protect along path(s)	migration toward states of
	against anticipated	higher risk
	adversary capabilities	
Risk Reduction	From improved	Realized as part of complex
	component reliability	risk management trade-space
	& defense-in-depth	
Risk Measure	System effectiveness	State description including
	(e.g., combinatorial	nuclear material loss, area
	reliability of security	contamination &
	components)	socioeconomic harms
Solution Space	Limited to increasing	Expanded to technical,
e	security component	organizational or geopolitical
	reliability or reducing	influences & safety/safeguards
	adversaries	leverage points
	capabilities	
Relationship to	None, treated as an	Parallel characteristic, treated
Safety &	independent risk	as interdependent component
Safeguards		of complex risk

Lessons from SNF Transportation

- A potential *paradigm shift* in risk assessment & management for international SNF transportation security (and, nuclear fuel cycle activities writ large)
 - Risk from the 'inside out' as a dynamic balance within a system statebased tradespace
- Additional major lessons include:
 - realities of international SNF transportation will challenge current approaches and assumptions;
 - risk itself is complex;
 - some aspects of/influences on risk are controllable, some are not;
 - 3S interdependencies exist;
 - risk is a complex trade space; and,
 - integrated 3S risk management frameworks can reduce risk/uncertainty, even for individual (e.g., security only) perspectives

Implications for Transportation Security (1/2)

 These conclusions offer a better understanding of 3S interactions that can improve SNF transportation security design & analysis

Lessons Learned	Implications for SNF Transportation Security
Realities of international SNF transportation will challenge current approaches and assumptions	 Need to (re)assess the validity of assumptions underlying current approaches to transportation security Technical analysis tools need to account for the variation in implementation of the PPS in transit among different operators
Risk itself is complex	 Security risk metrics (e.g., system effectiveness, P_E) may be insufficient to adequately describe security risk/assess vulnerabilities Need to identify key aspects/descriptors of new challenges to transportation security
Some aspects of/influences on risk are controllable, some are not	 Not all security risks lie in adversary action or can be described in probabilistic/technical reliability terms Implementation decisions & how technical components within transportation security systems matter—and should be included in analytical frameworks

Implications for Transportation Security (2/2)

 These conclusions offer a better understanding of 3S interactions that can improve SNF transportation security design & analysis

Lessons Learned	Implications for SNF Transportation Security
3S interdependencies exist	 Need to change the assumption that transportation security can be accurately & adequately evaluated independently
	• A broader solution space exists for managing complex risk in transportation security (e.g., leveraging safeguards material accounting practices to mitigate insider issues)
	 There is no 'true' minimization of security risk, therefore
Risk is a complex	attempts at security design optimization are more complex
trade space	Need to develop expertise/experience in making security- related trade-offs during international SNF transportation
Integrated 3S risk management	 Integrated approaches have been shown to incorporate more contributor to complex risk
frameworks can reduce risk/ uncertainty, even for individual perspectives	 Need to develop new analytical approaches to assess non- uniform, larger types of uncertainty (between safety, security & safeguards)

Conclusions

- This SNL study demonstrated how incorporating complexity & systems theories supports *complex risk*, a concept that better addresses
 - Non-traditional risk-related pressures & dynamics (e.g., social contexts & changing security implementation capabilities)
- Related insights offer improved management strategies to ensure the protection of nuclear (& radiological) materials against dynamic, complex risks while in transit
- This concept provides implications for improving SNF transportation security—and security of nuclear materials in transit more generically—against 21st century threats