

Radon management in buildings: Applied research on building characterization and protection

IAEA Webinar, 25 April 2018

Bernard Collignan, Senior Scientist,

(bernard.collignan@cstb.fr)

Building Research Institute (CSTB), France

Member of the Executive Commitee of the European Radon Association (ERA)

CSTB : Building Research Center

Multi-disciplinary teams on the whole territory

le futur en construction

Marne-la-Vallée

Head office

- Energy-Environment
- Health-Comfort
- Envelope and Roofing
- Insulation and Cladding
- Safety, Structures, and Fire performance
- Hydraulics and Sanitary
 Equipment
- Information Technologies and Knowledge Dissemination
- OQAI (Indoor Air Quality Observatory)

Bâtiment Bienvenüe

• Economics and Social Sciences

Paris

- Professional training centre
- Certivéa, Céquami, Cerway, subsidiaries of CSTB group

Nantes

- Climatology, Aerodynamics, Pollution and Purification
- Health-Comfort (lighting)

Grenoble

- Energy-Environment
- Health-Comfort
- Insulation and Cladding
- Envelope and Roofing
- Information Technologies
 and Knowledge Dissemination
- Acoustb, subsidiary of the CSTB group

Sophia-Antipolis

- Information Technologies and Knowledge Dissemination
- Envelope and Roofing
- Energy-Environment

/ CSTB : Building Research Center

Answering ecological and energy transition stakes : 4 key activities

IAEA webinar, 25 April 2018. Rn management in buildings | Bernard Collignan, CSTB, France

B

le futur en construction

- 1) PHYSICS OF RADON ENTRY IN BUILDINGS
- 2) CHARACTERIZATION OF INDOOR RADON EXPOSURE IN BUILDINGS
- 3) PRINCIPLES OF BUILDING PROTECTION
- 4) SOIL DEPRESSURIZATION SYSTEMS (SDS)
 - 4.1) SDS, PRINCIPLES
 - 4.2) SDS, EXISTING BUILDING (PILOT STUDIES)
 - 4.3) SDS, NEW BUILDING (EXPERIMENTAL HOUSE)
- **CONCLUSIONS**

1) Physics of radon entry in buildings

CSTB / 1) Physics of radon entry in buildings

In case of high radon level indoors (few hundreds Bq/m³), main cause: radon from the ground

CSTB / 1) Physics of radon entry in buildings

Entry mechanisms into building:

- B- Diffusion, linked with concentration differences
- ⊶ <u>Convection</u>, linked to slight depressurisation of building

Indoor radon concentration results on many parameters:

- Ground potential (nature, permeability)
- Building characteristics (geometry, foundation, systems,...)
- Meteorological conditions (temperature, wind)
- Behaviour of occupants (opening window, doors, heating habit)

 \rightarrow variable over time

e futur en construction

NF* ISO 11665-8 January 2013

Measurement of radioactivity in the environment — Air: radon-222 — Part 8: Methodologies for initial and additional investigations in buildings

Scope

- Specifies requirements for the determination of the activity concentration of radon in all types of buildings.
- Describes the measurement methods used to assess, the average annual indoor radon activity concentration **Initial investigation or screening**
- Selection of measuring devices use of passive detectors following ISO 11665-4 standard
- Location of the measuring points in the building
- Definition of the number of devices required
- Installation of measuring devices

- → at least half of the measurement **period during the winter or the heating season**;
- → at least two months of the measurement period during normal occupancy

*French standard (NF)

NF ISO 11665-8 January 2013

Protocol used in regulation in France for building with public access and working places, also in many other countries

Advantages:

- Good approximation of annual averaged indoor radon concentration
- Easy to install
- Low cost

Disadvantages:

- ✓ Duration: at least two months of measurement
- ✓ Restriction of the period of measurement: heating season
- Representativeness of occupant exposure

 \rightarrow Difficult to use this protocol in existing dwelling (real estate transactions, occupant behaviour, ...)

METHODOLOGY FOR THE CHARACTERIZATION OF THE RADON ENTRY IN DWELLINGS

Objective:

To develop complementary or alternative tool with a short time characterization

Protocol developed:

Based on previous works undertaken by M. Sherman, W. Ringer, A. Fronka

- > To define experimentally a **radon potential entry** for a given building (entry law)
- To assess averaged annual indoor radon concentration using the entry law with numerical ventilation model

Summary of protocol

e futu<u>r en construct</u>ion

- Depressurization of dwelling using a "blower door"
- Realization of 2 or 3 depressurization levels (△P: pressure difference between outdoors and indoors), measuring air exhaust level
- Continuous measurement of Rn Concentration at the exhaust
- Additional characterization:
 - Air permeability of the dwelling (blower door)
 - Assessement of ventilation system performances

Analysis of results

- For given depressurisation (ΔP) and air exhaust level (AEL):

 $\Phi_{RN} = C_{Rn asympt} \times AEL$

- Test undertaken at different depressurisation levels
 - \rightarrow Definition of a radon entry law:

$$\Phi_{\sf RN} = \mathbf{k} \Delta \mathbf{P}$$

٨P

Example of indoor radon evolution for three different depressurization levels

Definition of radon entry potential

Potential reflecting the amount of radon entering the building by m² of heated ground floor at 4 Pascal depressurization level

- \rightarrow Depends only on building characteristics
- \rightarrow The greater the potential, the more there is indoor radon exposure

Protocol tested on 28 dwellings

e futu<u>r en construction</u>

- Distributed in 5 regions : Auvergne, Limousin,
 Bretagne, Languedoc-Roussillon and Rhône-Alpes
- > Old buildings (18th century) to very recent (2010)
- > Very permeable to very airtight dwellings
- > Different ventilation systems
- > Exposure to radon low to high: from 50 to 7 000 Bq/m³, measured using two months with passive detector measurements

Comparison of radon entry potential (P_{Rn4}) with averaged indoor concentration measurement (Av. C_{Rn} meas.)

Assessment of averaged annual indoor radon concentration

Use of numerical model of ventilation in association with radon entry law

Unsteady Ventilation Model

Input data

- > Dimensions and orientation of the dwelling
- > Air-tightness of dwelling
- > Ventilation system
- > Annual local weather (Wind, Text)
- > Rn entry law $(\Phi_{Rn} = K \Delta P^n)$

Resolution: mass balance equation

Results

- > Building depressurization throughout the year
- > Air exchange rate
- > Indoor radon concentration (C_{Rn})

Comparison of calculated averaged indoor concentration (Av. C_{Rn} calc.) with averaged indoor concentration measurement (Av. C_{Rn} meas.)

IAEA webinar, 25 April 2018. Rn management in buildings | Bernard Collignan, CSTB, France

Constraints and limitations

Experiments with calm weather.

Numerical assessment of annual average concentration doesn't take into account occupant behavior (frequency and length of time of windows opening)

Promising results

Housing classification proposal In most cases, consistent results

Strength of the method

Characterization performed in one day measurement, in every season

Publications

- Procedure for the characterization of radon potential in existing dwellings and to assess the annual average indoor radon concentration. Collignan B, Powaga E. Journal of Environmental Radioactivity, 2014 Jul 7;137C:64-70. doi: 10.1016/j.jenvrad.2014.06.024
- Development of a methodology to characterize radon entry into dwellings. Collignan B., Lorkowski C., Améon R. Building and Environment 57, 176 183, November 2012

3) Principles of building protection

Two principles:

- $\checkmark\,$ To avoid radon entry into buildings
- ✓ To dilute indoor radon concentration

Three types or « groups » for solutions:

- > Sealing the interface between the ground and the building
- Treatment of occupied volume (ventilation, pressure)
- Treatment of foundation (ventilation, pressure)

4) Soil Depressurization Systems (SDS)

4.1) SDS, principles

Treatment of foundation

Principle of Soil Depressurization System (SDS)

Initial pressure field

Pressure field generated with SDS

Treatment of foundation

Principle of Soil Depressurization System (SDS)

Internal position for extraction

External position for extraction

Principle of SDS

- Example of installation in new building (or strong renovation)

- Could be tested in existing building, depending on nature of foundation (generally slab on grade with gravel layer below)

CSTB *le futur en construction*

4.2) SDS, existing buildings

Feasibility and sizing test of SDS, principle (from US-EPA)

\rightarrow Presentation of two pilot studies for this test

$\left| \text{CSTB}_{\text{Le futur en construction}} \right|$ 4.2) SDS, existing buildings (1st pilot study)

Screening level: 1990 Bq/m³

Built in 1995 using concrete bloks,

One floor of 630 m²

Concrete slab on grade with a technical void in central part (section 2 m x 2 m)

Exhaust mechanical ventilation system

Radon measurement

/ 32

Pressure measurement below slab P1, P2, P3

Sealing interface and SDS test results

Evolution of indoor radon concentration

Exhaust from void of 0.5 m³/h/m²

4.2) SDS, existing buildings (1st pilot study)

Corrective actions works

- Sealing of the slab

le futur en construction

- Exhaust level on void:
 450 m³/h
 corresponding to 0.7 m³/h/m² of ground
- Upgrade of building ventilation

Measurement control: 37 Bq/m³ (eff. : 95%) Cost : 15 000 €.

Exhaust fan in technical void

\mathbf{B}_{diam} / 4.2) SDS, existing buildings (2nd pilot study)

Screening level: Different rooms above1000 Bq/m³

Built in1994 in concrete, one level Concrete slab on grade

Natural airing with air entrance for each room

Test of SDS

Installing 6 points for extraction in different rooms

4.2) SDS, existing buildings (2nd pilot study)

Test results (six different locations)

Extraction point

le futur e<u>n construction</u>

Pressure meas.

Indoor radon concentration evolution

CSTB (4.2) SDS, existing buildings (2nd pilot study)

Corrective actions works

- Installing exhaust fan on each point for SDS

Exhaust duct

Exhaust fan below roof

Measurement Control

	Screening (Bq/m³)	Control (Bq/m ³)	Efficiency (%)	
Room 11	1 106	133	88	
Room 12	1 741	34		
(exhaust)			98	
Room13	570	49	91	
Room14	601	68	89	

Cost : Around 2 000 € + labour

4.3) SDS, new buildings

CSTB (4.3) SDS, new buildings (experimental house)

Experimental house to study links between ventilation and indoor air quality in housing sector

Installing a SDS during construction

Holes managed through concrete floor for pressure measurements

CSTB/4.3) SDS, new buildings (experimental house)

Basement depressurization using mechanical exhaust ventilation system

Description of mechanical exhaust ventilation principle in a dwelling

Kitchen	45 m ³ /h	
Kitchen, high flow, cooking activity	135 m ³ /h	
Bathroom	30 m ³ /h	
Toilet	30 m ³ /h	
Optional other bathroom	30 m ³ /h	
Optional other toilet	15 m ³ /h	

-- 5 living room

-- self regulated registers to obtain required exhaust flow

CSTB (4.3) SDS, new buildings (experimental house)

classical installation of exhaust ventilation system

CSTB *Le futur en construction* 4.3) SDS, new buildings (experimental house)

Different configurations tested:

- Two ventilation configurations
- Three cases of exhaust flow level for SDS
- Low and high exhaust flows tested for each case

CSTB / 4.3) SDS, new buildings (experimental house)

<u>Results</u>		Dwelling ventilation			S.D.S.	
		Kitchen exhaust flow (m ³ /h)	Bathroom exhaust flow (m ³ /h)	Toilet exhaust flow (m ³ /h)	basement exhaust flow (m ³ /h)	Basement depressurization (Pa)
Only mechanical ventilation	Low velocity	55	35	34		
	High velocity	149	30	30		
Sump with 15 m ³ /h v theoretical register v	Low velocity	52	34	33	20	5.8
	High velocity	131	29	28	17	<i>4.8</i>
Sump withLow30 m³/hvelocitytheoreticalHighregistervelocity	52	35	33	32	12	
	High velocity	140	31	30	28	9.9
Sump connexion	Sump Low connexion velocity	49	32	31	45	18.9
with no High register velocity	High velocity	123	29	29	40	14.9

Kitchen, bathroom and toilet connection configuration

 \rightarrow One year follow up

CSTB (4.3) SDS, new buildings (experimental house)

Preparation of basement: need to install new sump with 200 mm diameter

$\left| \text{CSTB}_{\text{le futur en construction}} \right|$ 4.3) SDS, new buildings (experimental house)

Monthly results

Evolution of basement extract flow and basement depressurisation during time

CSTB (4.3) SDS, new buildings (experimental house)

Natural characterisation of basement depressurisation

Comparison of basement depressurisation function of basement extract flow for natural and mechanical extraction

Percentage of running time of the system along year above three thresholds

Impact of static extractor

Extract flow from basement function of wind velocity (temperature difference $< 4^{\circ}$ C)

- Higher flow with static extractor, around twice
- Fluctuations of extraction for a given wind

4.3) SDS, new buildings (experimental house)

ANALYSIS FOR NATURAL SDS

- high variability of running along the year and even during a day
- significant percentage of running along year and mainly in winter season
- **D** positive impact of static extractor on extract flow from basement

Bibliography

e futur e<u>n construction</u>

- *Air flow models for sub-slab depressurisation systems design.* Diallo T.M.O., Collignan B., Allard F. International Building and Environment 87 (2015) pp 327-341. doi:10.1016/j.buildenv.2015.01.017
- Experimental study on passive Soil Depressurisation System to prevent soil gaseous pollutants into building, Abdelouhab M, Collignan B, Allard F. Building and Environment 45, 2400 2406, (May 2010).
- Basement Depressurisation using dwelling mechanical exhaust ventilation system. Collignan B., O'Kelly P., Pilch E. 4th European Conference on Protection against radon at home and at work. Praha, 28th June – 2nd July 2004.
- Dimensioning of soil depressurization system for radon remediation in existing buildings. Collignan B., O'Kelly P. Proceedings of ISIAQ 7th International Conference Healthy Buildings 2003, Singapore, 7th – 11th December 2003, Vol. 1, pp 517-523.

→ Public health challenge to develop good practices for building management

 \rightarrow To diminish efficiently indoor radon population exposure

- Relevant characterization of initial situations
- Recommendation and implementation of building protections adapted to a given context
- Development of professional skills

Thank you for your attention!