The calcification process and measurement techniques

Photo from JC073 Changing Oceans Research Cruise

What is calcification?

- The accumulation of calcium salts into body tissue, such as bones, shells, and carapaces.
- A biologically-mediated process
- In marine calcifiers, calcification predominantly results in calcium carbonate structures that are made of either calcite, aragonite or high-Mg calcite.

Figure 1. Comparison of calcite single crystals: (*left*) stereom of echinoderm and (*right*) synthetically produced rhombohedral forms.

What is calcification?

$Ca^{2+} + 2HCO_3^{-} \leftrightarrow CaCO_3 + CO_2 + H_2O$

Saturation State – degree to which seawater is saturated (or not) with relevant ions; provides a measure of the thermodynamic potential for the mineral to form or to dissolve

$$\begin{split} \Omega &= \underbrace{[Ca^{2+}][CO_3^{2-}]}_{K_{sp'}} & \Omega > 1 \text{ Supersaturated with respect to } CaCO_3 \\ \Omega &< 1 \text{ Undersaturated with respect to } CaCO_3 \text{ (dissolution)} \end{split}$$

Major invertebrate calcifying groups:

- Molluscs
- Cnidarians
- Echinoderms
- Crustaceans

Other organism types:

- Formaminifera
- Phytoplankton: Haptophytes (coccolithophores)
- Algae: Rhodophytes (coralline algae)

In most biological systems, the **site of mineral deposition is isolated** from the environment, the extent of isolation is variable.

Biologically induced mineralisation – organism uses cellular activities to direct the nucleation, growth, morphology, and final location of the mineral that is deposited. Several types, but most CaCO3 forming marine organisms either use an **extracellular** biologically-controlled process or an **intracellular** strategy.

Extracellular biologically-controlled process e.g. Molluscs, Corals,

Figure 5. Illustrations of biologically controlled extracellular mineralization showing that this process is distinguished by nucleation outside of the cell. a.) Cations are pumped across the cell membrane and move by passive diffusion through extracellular fluids to the site of mineralization. b.) Cations are concentrated intracellularly as aqueous ions into a vesicle that is subsequently secreted. Compartment breakdown at site of mineralization releases cations for biomineral formation.

- Basic form of calcification
- Organic matrix important for defining structure
- Ions can be actively pumped out of the cell *or* pumped into a vesicle within the cell which is then secreted outside.

e.g. Corals

- Model of dissolved inorganic carbon (DIC) absorption for coral calcification and photosynthesis.
- Extracellular space has controlled pH environment
- Anion exchange pumps are utilised for control

Intracellular strategy. E.g. Echinoderms (urchins), coccolithophores...

organic matrix as substrate for accumulation and continued growth of unit

- Can form huge mineralised products within a vesicle that is the product of many cells fusing their membranes.
- Mineral is exposed to the environment only when the membrane is degraded.

Browlee & Taylor 2002

Pane & Barry 2007; Photo MBARI (2006)

- Crustaceans have complex moult cycles
- Able to reabsorb minerals from 'old' shell to incorporate into 'new' shell
- High organic component, as well as chitin
- Organic matrix important for structuring mineral formation
- Different parts of crustaceans (e.g. claws, carapace, legs) have different mineral content which determines 'hardness' and strength

Why should ocean acidification impact calcification?

1. Direct shifts in acid-base balance (pH, ionic composition) of intracellular fluids that compromise calcification process

Venn et al. 2013

Why should ocean acidification impact calcification?

2. Enhanced dissolution in undersaturated conditions e.g. dissolution of "dead" structures compared to "live"

Hennige et al. 2015

Why should ocean acidification impact calcification?

3. Additional energy requirements needed for maintaining and producing calcium carbonate material in unfavourable conditions e.g. trade-offs between physiological process... brittlestars, mussels, many others...

Wood et al. 2008

Some definitions

- **Gross calcification** CaCO₃ precipitated by an organism or community
- **Net calcification** CaCO₃ precipitated by an organism or community minus dissolution of CaCO₃ from the organism or community.
- **Potential calcification** Gross calcification, assuming that the organisms considered cover 100% of the area
- Net accumulation Amount of CaCO₃ precipitated locally plus the amount of material imported minus dissolution and export

Summary of techniques

- Geological approach
- Sedimentalogical approach
- Alkalinity Anomaly Technique
- pH-O₂
- Change in calcium concentration
- Radioisotopes (⁴⁵Ca, ¹⁴C, ³H-tetracycline)
- Changes in particulate calcium content
- X-ray analysis
- Buoyant weight
- "Biological" approach
- Changes in Particulate Inorganic Carbon content
- Molecular tools

Geological

CaCO₃ accumulates in sediment over long time periods giving an indication of rates of calcification.

Net accumulation of CaCO₃ is calculated by the thickness of the layer multiplied by the density, divided by the time increment (measured by radiocarbon dating)

Level: Community

Timescale: 1000-20000 years

Examples: Chave et al. (1972)

Pros: Provides integrated, long-term estimates

Cons: Numerous uncertainties and assumptions. Highly constrained by sea level

Turley et al. 2009

Sedimentalogical

Calcified organisms accumulate within sediments. **Net calcification (?)** is measured using the percentage weight contribution in sedimentary skeletal components **Level**: Community

Timescale: Months

terms

Examples: Langer et al. (1997), Wienkauf et al. 2013

Pros: Only needs sediment samples.

Cons: It is not clear what this approach measures, it does not account for advection

Weinkof et al. 2013

Alkalinity Anomaly Technique

Alkalinity is lowered by two equivalents for each mole of CaCO3 precipitated. **Net calcification** is calculated by measuring the TA before and after an incubation period, and the Δ TA is scaled to Δ CaCO3 (i.e. calcification = 0.5x Δ TA) **Level**: Organisms and communities

Timescale: Hours to weeks

Examples: Smith & Key (1975), Gazeau et al. (2007), Martin et al. (2013), Inoue et al. (2013)

Pros: Very precise (1 SD = $3 \mu mol/kg$ or about 0.2%)

Cons: Needs discrete samples (but see Watanabe et al., 2004). A correction for changes in nutrients may be needed. Need to enclose or know residence time.

Gazeau et al. 2007

pH-O₂

Relationships exist between ΔO_2 and ΔDIC_{org} , the metabolic quotients.

Net calcification can be measured by estimating net community production and respiration from changes in the concentration of dissolved O_2 . ΔDIC_{calc} is then calculated by subtracting ΔDIC_{org} from the upstream DIC value. ΔDIC_{calc} can be converted to ΔTA and consequently calcification.

Level: Organisms and communities

Timescale: Hours

Examples: Chisholm & Barnes (1998), Barnes (1983)

Pros: It does not require TA monitor (which is timely)

Cons: Needs DIC (hence TA) upstream. Assumes metabolic quotients

Chrisholm & Barnes 1998

Calcium concentration

Calcium concentration can directly be measured within internal fluids of organisms. **Net calcification** can be estimated from calcium removal measured using chemical titrations or sensors **Level**: Organisms and communities

Timescale: Minutes to weeks

Examples: Chisholm & Gattuso (1991), Al-Horani et al. (2003)

Pros: Direct measurement of calcium uptake; no major assumptions

Cons: Low detection limit, high background concentration (10 mmol/l)

Radio isotopes

Calcium is taken up into the organisms skeletal components, the calcium uptake can be measured using radiolabelled elements (⁴⁵Ca, ¹⁴C and ³H) to estimate **net** calcification

Level: Organisms

Timescale: Minutes to hours

```
Examples: Fabry et al. (1989), Comeau et al. 2010
```

Pros: Extremely sensitive, Short-term incubations

Cons: Destructive, Non-biological adsorption, Use of radioisotopes restricted

Changes in particulate calcium

Calcium is taken up into the organisms skeletal components, the calcium concentration can be measured by flame atomic absorption spectroscopy to give an estimate of **net calcification**.

Level: Organisms

Timescale: Hours to days

```
Examples: (Stoll et al., 2002); (Findlay et al. 2011)
```

Pros: Precision is adequate when growth rates are high (cultures)

Cons: Analytical care Instrumentation

X-rays

X-rays (and Computerised tomography (CT) scanning) measure the density and mass of skeleton, providing a direct measure of **net calcification**, particularly through time (using long-lived coral structures).

Level: Organisms

Timescale: days, months, to 100s years

Examples: Lough & Barnes (2000), Crook et al. (2013)

Pros: Enables retrospective analysis, provides an assessment of erosion

Cons: Requires substantial equipment & instrumentation

Crook et al. 2013

Buoyant weight

Increases in mass of an organisms skeleton directly correspond to increases in **net** calcification.

Level: Organisms
Timescale: Sub-daily to months/years
Examples: Dodge et al. 1984, Jokiel et al. 2008
Pros: Quite sensitive, Not destructive, No incubation required
Cons: Serious problem of normalization for comparative analysis

Dodge et al. 1984

Biological approaches

Growth measurements or turnover rates (for populations) are associated with an increase in mass of calcifed structure and can be used to estimate **net calcification**. Techniques can include using flurouscent dyes (e.g. calcein staining) to observe specific growth areas.

Level: Organisms

Timescale: Days, months to years

Examples: Fabry (1990), Smith (1972), Migné et al. (1998), Comeau et al. (2009) Pros: Simple, individual level

Cons: Short term growth not always significant, lots of variability

Comeau et al. 2009

Changes in PIC

Changes in the content of the particulate carbon content of an organism reflect its accumlation or loss of carbon and provide an estimate of **net calcification**. Total particulate carbon (TPC) and particulate organic carbon (POC) are measured (CHN analyzer, mass spectrophotometry). PIC = TPC - POC. Level: Organisms Timescale: Hours to days Examples: Riebesell et al. (2000), Sciandra et al. (2003) Pros: Adequate with cultures and field samples (?) Cons: Instrumentation, Not amenable to automation

Riebesell et al. 2000

Molecular

Genetics controls the calcification process, by measuring the activity of genes involved in the calcification process (measure mRNA) gives an idea of the **gross** calcification (?)

Level: Organisms, perhaps communities?

Timescale: Hours (to days?)

Examples: Lohbeck et al. 2014

Pros: High sampling rate because no incubation required

Cons: Post-translational regulation, Poor precision (semi-quantitative), Reliance on instrumentation (quantitative real-time PCR), not clearly related to actual production of calcium carbonate skeleton.

Gene name	Full name	Protein ID/*GenBank accession number	Putative function	Primer name	Primer sequence 5'-3'	Amplicon size	Reference
EFG1	Elongation Factor 1	462457	endogenous reference gene	EFG1_F	GCT GGA AGA AGG ACT TTG TTG	101	Mackinder et al. 2011
				EFG1_R	TCC ACC AGT CCA TGT TCT TC		
	Actin	564188.1*, 564193.1*, 564192.1*, 564191.1*, 564190.1*, 564189.1*	endogenous reference gene	Actin_F	GAC CGA CTG GAT GGT CAA G	96	Mackinder et al. 2011
Actin				Actin R	GCC AGC TTC TCC TTG ATG TC		
aTUB	a Tubulin	multiple copy	endogenous reference gene	atub F	GCA TCG CCG AGA TCT ACT C	- 84	Bach et al. 2013
				atub R	TCG CCG ACG TAC CAG TG		
	Rubisco	D45845.1	Gene coding for large subunit of RUBISCO	RB_F	CAA TOG GTC ACC CAG ATG GTA	100	Bruhn et al. 2010
NB				RB R	GCG ATA TAA TCA CGG CCT TCG		
4011	Anion Exchanger Like 1	99943	Bicarbonate transporter, SLC4 family	AEL1_F	TTC ACG CTC TTC CAG TTC TC	102	Mackinder et al. 2011
Acta				AEL1_R	GAG GAA GGC GAT GAA GAA TG		
αCA	α Carbonic Anhydrase 2	456048	Alpha carbonic anhydrase	aCA2_F	AGA GCA GAG COC TAT CAA CA	134	Richier et al. 2011
				dCA2_R	TCG TCT CGA AGA GCT GGA A		
601	ő Carbonic Anhydrase	436031	Delta carbonic anhydase	δCA_F	ACG AGC ACG AGA TGT TCA AG	87	Bach et al. 2013
00.4				δCA_R	TCT CGC CAA CCA TCA TCT C		
	a literation of a		Ca2+/H+ exchangers, similar to CAX family	CAX3_F2	CTC CTC TGC GTC TTT GCA T	90	Mackinder et al. 2011
CAUG	Ca"/H' exchanger 3	416800		CAX3 R2	GAG GGC GGT GAT GAG GTA		
	Vacuolar-type H [*] pump	359783	Vacuolar H+-ATPase, V0, subunit c/c'	ATPV F	TAC GGC ACT GCA AAG TCT G	83	Mackinder et al. 2011
ATPVC/C				ATPV R	ACG GGG ATG ATG GAC TTC		
		c70083	D have the second	PATP_F	GAG CAC AAG TTC CTC ATC GTC	105	Brokensi 2012
PAIP	Plasma membrane type H' pump	67081	P type H+-ATPase	PATP R CAC GTC GGC CTT CTT GAG	105	Bach et al. 2013	
NhaA2	Na [*] /H [*] exchanger 2	447659	Na+/H+ antiporter	NhaA2 F	CTC GTC TGC TAT GGC ATC TC	80	Bach et al. 2013
				NhaA2_R	GTT GCT CGC GTC CAT TC		
LOY	Low CD ₂ induced gene	457739	Protein in Emiliania huxleyi 457793	LCIX_F	CAG CAG TCG TGG CTC AAG	94	Bach et al. 2013
				LCIX_R	CGT AAG CGA CGT GGA TCA G		
GPA	Ca ²⁺ binding protein	431830	Calcium-binding protein in Emiliania huxleyf	gpaBR_F	AGG CCT TCT CCA GCA TCA T	70	Richler et al. 2009
				gpaBR_R	GTT CAG CGT GCT CTC CGA G		

Generic measuring issues

- Considerably **different units** across the different techniques
- Measurements tend to **need to be normalised**
- organism: surface area, skeletal weight, body mass, biomass...
- communities: volumetric, surface area...
- Not trivial to compare!
- Most measure **NET** calcification difficult to disentangle the impacts on the organisms ability to calcify with dissolution.

Summary

- Calcification ability has a **connection to energy** budgets
- Feeding rates may overcome some of the costs –will food supply change?
- **Dissolution rates** will increase as saturation state decreases important for exposed material
- **Bio-erosion** may also further impact of OA
- Adaptation potential?
- Interactions between organisms
- Complexity of **multiple stressors**