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What is calcification?

* The accumulation of calcium salts into body tissue, such as bones, shells, and
carapaces.

* A biologically-mediated process

* In marine calcifiers, calcification predominantly results in calcium carbonate
structures that are made of either calcite, aragonite or high-Mg calcite.

Figure 1. Comparison of calcite single crystals: (leff) stereom of echinoderm and (right) synthetically
produced rhombohedral forms.
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What is calcification?
Ca’* + 2HCO, € CaCO, + CO, + H,0

Saturation State — degree to which seawater is saturated (or not) with relevant
ions; provides a measure of the thermodynamic potential for the mineral to form
or to dissolve

Q= [Ca2+][CO32'] Q) > 1 Supersaturated with respect to CaCO,

| . . .
K, Q) <1 Undersaturated with respect to CaCO, (dissolution)
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Who calcifies, and how?

Major invertebrate calcifying groups:

Molluscs

Cnidarians

Echinoderms

Crustaceans

Other organism types:

- Formaminifera

- Phytoplankton: Haptophytes (coccolithophores)
- Algae: Rhodophytes (coralline algae)

In most biological systems, the site of mineral deposition is isolated from the
environment, the extent of isolation is variable.

Biologically induced mineralisation — organism uses cellular activities to direct the
nucleation, growth, morphology, and final location of the mineral that is deposited.
Several types, but most CaCO3 forming marine organisms either use an
extracellular biologically-controlled process or an intracellular strategy.
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Who calcifies, and how?

Extracellular biologically-controlled process e.g. Molluscs, Corals,

a) b.) e Basic form of calcification
w2+ e Organic matrix important for
Mz+ defining structure
e * lons can be actively pumped
out of the cell or pumped into a
izt vesicle within the cell which is
then secreted outside.
LN T ¥
%%%Q,}%Q,}iz A ) )5
organic matrix organic matrix

Figure 5. Illustrations of biologically controlled
extracellular mineralization showing that this process
is distinguished by nucleation outside of the cell. a.)
Cations are pumped across the cell membrane and
move by passive diffusion through extracellular
fluids to the site of mineralization. b.) Cations are
concentrated intracellularly as aqueous ions into a
vesicle that is subsequently secreted. Compartment
breakdown at site of mineralization releases cations
for biomineral formation.
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Who calcifies, and how?

e.g. Corals
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Model of dissolved inorganic
carbon (DIC) absorption for
coral calcification and
photosynthesis.
Extracellular space has
controlled pH environment
Anion exchange pumps are
utilised for control
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Who calcifies, and how?

Intracellular strategy. E.g. Echinoderms (urchins), coccolithophores...

* Can form huge mineralised products within
a vesicle that is the product of many cells
fusing their membranes.

* Mineral is exposed to the environment only
when the membrane is degraded.
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Who calcifies, and how?

Pane & Barry 2007; Photo MBARI (2006)

P M L Plymouth Marine
Laboratory

Crustaceans have complex moult cycles
Able to reabsorb minerals from ‘old’ shell to
incorporate into ‘new’ shell

High organic component, as well as chitin
Organic matrix important for structuring
mineral formation

Different parts of crustaceans (e.g. claws,
carapace, legs) have different mineral
content which determines ‘hardness’ and
strength
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Why should ocean acidification impact calcification?

1. Direct shifts in acid-base balance (pH, ionic composition) of intracellular fluids
that compromise calcification process

e.g. Corals
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Why should ocean acidification impact calcification?

2. Enhanced dissolution in undersaturated conditions
e.g. dissolution of “dead” structures compared to “live”
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Why should ocean acidification impact calcification?

3. Additional energy requirements needed for maintaining and producing calcium
carbonate material in unfavourable conditions
e.g. trade-offs between physiological process... brittlestars, mussels, many others...
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Some definitions

* Gross calcification CaCO, precipitated by an organism or community

* Net calcification CaCO, precipitated by an organism or community minus
dissolution of CaCO, from the organism or community.

* Potential calcification Gross calcification, assuming that the organisms
considered cover 100% of the area

* Net accumulation Amount of CaCO, precipitated locally plus the amount of
material imported minus dissolution and export
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Summary of techniques

* Geological approach

* Sedimentalogical approach

e Alkalinity Anomaly Technique

* pH-0O,

e Change in calcium concentration

» Radioisotopes (*°Ca, 4C, 3H-tetracycline)
* Changes in particulate calcium content

e X-ray analysis

* Buoyant weight

* “Biological” approach

e Changes in Particulate Inorganic Carbon content
* Molecular tools



P M L Plymouth Marine
Laboratory

Geological

CaCO, accumulates in sediment over long time periods giving an indication of rates
of calcification.

Net accumulation of CaCO; is calculated by the thickness of the layer multiplied by
the density, divided by the time increment (measured by radiocarbon dating)
Level: Community

Timescale: 1000-20000 years

Examples: Chave et al. (1972)

Pros: Provides integrated, long-term estimates

Cons: Numerous uncertainties and assumptions. Highly constrained by sea level

Turley et al. 2009



Sedimentalogical
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Calcified organisms accumulate within sediments. Net calcification (?) is measured
using the percentage weight contribution in sedimentary skeletal components

Level: Community
Timescale: Months

Examples: Langer et al. (1997), Wienkauf et al. 2013

Pros: Only needs sediment samples.

Cons: It is not clear what this approach measures, it does not account for advection
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Alkalinity Anomaly Technique

Alkalinity is lowered by two equivalents for each mole of CaCO3 precipitated.

Net calcification is calculated by measuring the TA before and after an incubation
period, and the ATA is scaled to ACaCO3 (i.e. calcification = 0.5xATA )

Level: Organisms and communities

Timescale: Hours to weeks

Examples: Smith & Key (1975), Gazeau et al. (2007), Martin et al. (2013), Inoue et
al. (2013)

Pros: Very precise (1 SD = 3 umol/kg or about 0.2%)

Cons: Needs discrete samples (but see Watanabe et al., 2004). A correction for
changes in nutrients may be needed. Need to enclose or know residence time.

—e— Mytilus edulis
0.6 2 = 0.7, P<0.0001
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0.4 r* = 0.6, P<0.0001 % T

----

0.2+
P C
'0.2 ] I 1 | 1 |
7.3 .9 F % 7.9 8.1 8.3

Gazeau et al. 2007
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pH-0,

Relationships exist between AO, and ADIC,,, the metabolic quotients.

Net calcification can be measured by estimating net community production and
respiration from changes in the concentration of dissolved O,. ADIC_,,. is then
calculated by subtracting ADIC,, from the upstream DIC value. ADIC . can be
converted to ATA and consequently calcification.

Level: Organisms and communities

Timescale: Hours

Examples: Chisholm & Barnes (1998), Barnes (1983)

Pros: It does not require TA monitor (which is timely)

Cons: Needs DIC (hence TA) upstream. Assumes metabolic quotients
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Calcium concentration

Calcium concentration can directly be measured within internal fluids of
organisms. Net calcification can be estimated from calcium removal measured
using chemical titrations or sensors

Level: Organisms and communities

Timescale: Minutes to weeks

Examples: Chisholm & Gattuso (1991), Al-Horani et al. (2003)

Pros: Direct measurement of calcium uptake; no major assumptions

Cons: Low detection limit, high background concentration (10 mmol/l)
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Radio isotopes

Calcium is taken up into the organisms skeletal components, the calcium uptake
can be measured using radiolabelled elements (*°Ca, *C and 3H) to estimate net
calcification

Level: Organisms

Timescale: Minutes to hours

Examples: Fabry et al. (1989), Comeau et al. 2010

Pros: Extremely sensitive, Short-term incubations

Cons: Destructive, Non-biological adsorption, Use of radioisotopes restricted
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Changes in particulate calcium
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Calcium is taken up into the organisms skeletal components, the calcium
concentration can be measured by flame atomic absorption spectroscopy to give

an estimate of net calcification.

Level: Organisms

Timescale: Hours to days

Examples: (Stoll et al., 2002); (Findlay et al. 2011)

Pros: Precision is adequate when growth rates are high (cultures)
Cons: Analytical care Instrumentation
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X-rays

X-rays (and Computerised tomography (CT) scanning) measure the density and
mass of skeleton, providing a direct measure of net calcification, particularly
through time (using long-lived coral structures).

Level: Organisms

Timescale: days, months, to 100s years

Examples: Lough & Barnes (2000), Crook et al. (2013)

Pros: Enables retrospective analysis, provides an assessment of erosion

Cons: Requires substantial equipment & instrumentation
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Buoyant weight

Increases in mass of an organisms skeleton directly correspond to increases in net
calcification.

Level: Organisms

Timescale: Sub-daily to months/years

Examples: Dodge et al. 1984, Jokiel et al. 2008

Pros: Quite sensitive, Not destructive, No incubation required

Cons: Serious problem of normalization for comparative analysis

Dodge et al. 1984
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Biological approaches

Growth measurements or turnover rates (for populations) are associated with an
increase in mass of calcifed structure and can be used to estimate net calcification.
Techniques can include using flurouscent dyes (e.g. calcein staining) to observe
specific growth areas.

Level: Organisms

Timescale: Days, months to years

Examples: Fabry (1990), Smith (1972), Migné et al. (1998), Comeau et al. (2009)
Pros: Simple, individual level

Cons: Short term growth not always significant, lots of variability

Comeau et al. 2009



PML | tyainyer

Changes in PIC

Changes in the content of the particulate carbon content of an organism reflect its
accumlation or loss of carbon and provide an estimate of net calcification.
Total particulate carbon (TPC) and particulate organic carbon (POC) are measured

(CHN analyzer, mass spectrophotometry). PIC = TPC - POC.
Level: Organisms

Timescale: Hours to days

Examples: Riebesell et al. (2000), Sciandra et al. (2003)
Pros: Adequate with cultures and field samples (?)
Cons: Instrumentation, Not amenable to automation
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Molecular

Genetics controls the calcification process, by measuring the activity of genes
involved in the calcifcation process (measure mRNA) gives an idea of the gross
calcification (?)

Level: Organisms, perhaps communities?

Timescale: Hours (to days?)

Examples: Lohbeck et al. 2014

Pros: High sampling rate because no incubation required

Cons: Post-translational regulation, Poor precision (semi-quantitative), Reliance on
instrumentation (quantitative real-time PCR), not clearly related to actual
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Generic measuring issues

* Considerably different units across the different techniques

* Measurements tend to need to be normalised
- organism: surface area, skeletal weight, body mass, biomass...
- communities: volumetric, surface area...

* Not trivial to compare!

* Most measure NET calcification — difficult to disentangle the impacts on
the organisms ability to calcify with dissolution.

Calcification measurement method*
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Chan & Connolly, 2013
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Summary

* Calcification ability has a connection to energy budgets

* Feeding rates may overcome some of the costs —will food supply
change?

* Dissolution rates will increase as saturation state decreases —important
for exposed material

e Bio-erosion may also further impact of OA
* Adaptation potential?
* Interactions between organisms

* Complexity of multiple stressors



