INTRODUCTION TO CO₂ SPECIATION CALCULATIONS

ANDREW G. DICKSON SCRIPPS INSTITUTION OF OCEANOGRAPHY, UC SAN DIEGO

COMPUTER PROGRAMS EXIST FOR THESE CALCULATIONS

- Provide built in data for the various equilibrium constants which are functions of salinity, temperature, and pressure as well as for total concentrations such as boron that are proportional to salinity.
- Allow some additional acid-base information to be added (*e.g.* total phosphate and/or total silicate concentrations)
- Allow calculation of CO₂ speciation (typically from 2 analytical parameters, salinity & temperature)

Florida Shelf Ecosystems Response to Climate Change Project

CO2calc: A User-Friendly Seawater Carbon Calculator for Windows, Mac OS X, and iOS (iPhone)

http://pubs.usgs.gov/of/2010/1280/

Version 1.0.3

Mark Hansen

Lisa Robbins Joanie Kleypas Stephan Meylan

Open-File Report 2010–1280

U.S. Department of the Interior U.S. Geological Survey

02calc 1.3.0				Form	Batch	Export	Report	About	Inst
Input		Results							
Sample Information Name (6 chars)	Date	Get Date	1	Latitude		File Capture			
	<m d<="" td=""><td></td><td>15</td><td></td><td>N +</td><td>File Name</td><td>Record</td><td></td><td></td></m>		15		N +	File Name	Record		
Comment	Time	Get Time	1	Longitude	(w +				
			-	-					
Physical Data —	_	c	arbon	ate Data		Nutrient Data			
Salinity			TA (imol/kgSW)		Total P (µmol/k	g5W)		
temperature(C)			тсоз	! (µmoi/kgSW)		Total Si (µmol/k	(gSW)		
Pressure (dbars)			pH (d	chosen scale)					
			fC02	! water (µatm)		Air-sea Flux			
Adjusted Conditions	_		pCO2	water (µatm)		pCO2 Air (µatm			
Temperature (C)			<u> </u>			Windspeed			
Pressure(dbars)						-	m/s	-	
1	_							Clear	
1									
Preferences CO2 Constants					Total Boron				
KHSO4		1			Air-sea Flux			Select	
pH Scale									

CO2calc 1.3.0		Form	Batch	Export	Report	About	Insta
Input	Results						
	ate <u>Get Date</u> <m d="" yy=""> T5 me <u>Get Time</u></m>	Latitude Longitude	N *	File Capture File Name	Record		
	Sample ic e logged					:S	
Pressure (dbars)	fC02	chosen scale) 2 water (µatm)		r-sea Flux pCO2 Air (µatm)			
Adjusted Conditions Temperature (C) Pressure(dbars)	pCO2	! water (µatm)		Windspeed	m/s	Clear	
Preferences CO2 Constants		1	Fotal Boron				
		4	Air-sea Flux			Select	

Input	Results				_
- Sample Information Name (6 chars) Date Comment Time	/d/yv>	N +	File Capture File Name	Record	
Physical Data Salinity temperature(C) Pressure (dbars)	Carbonate Data TA (µmol/kgSW) TCO2 (µmol/kgSW) pH (chosen scale) fCO2 water (µatm)	T T Air	trient Data Total P (µmol/kgSW) Total Si (µmol/kgSW -sea Flux CO2 Air (µatm)	J	
Adjusted Conditions Temperature (C) Pressure(dbars) Pressure(dbars)	pCO2 water (µatm)		Vindspeed	m/s • Clear	

Input			_				
-Sample Information Name (6 chars) Date		Latitude		File Capture	Record		
Comment Tim	e Get Time	Longitude	(W *				
Physical Data Salinity		nate Data umol/kgSW)		utrient Data Total P (µmol/kg	sw)		
temperature(C)		2 (µmol/kgSW)		Total Si (µmol/kg	15W)		
Pressure (dbars)		chosen scale) 2 water (µatm)		r-sea Flux pCO2 Air (µatm)			
- Adjusted Conditions		2 water (µatm)					
C	hoice o	f CO ₂	const	ants, et	С.		
Preferences CO2 Constants KHSO4			Total Boron Air-sea Flux			Select	

STEP 1

Choose the set of equilibrium constants, etc. that you wish to use.

CO2 Constants	Total Boron	
KHSO4	Air-sea Flux	Select
pH Scale		

These are the choices I would usually recommend for systems with S > 20; I am sure they could be argued against.

THE KINDS OF CHEMICAL QUESTIONS WE NEED TO BE ABLE TO ANSWER

- How can I estimate the CO₂ composition of a sample of sea water?
- If the CO₂ level in the atmosphere increases by 300 ppm, how much will the pH in the surface ocean change?
- What will be the consequent change in the saturation state of aragonite?
- Will this be the same all over the oceans? Why? (or Why not?)
- How should I modify the CO₂ composition of a sample of sea water to reach a desired target composition?

A SIMPLE EXAMPLE

Surface sea water from the central North Atlantic

	(asses)					
Input	Results			_	_	
Sample Information			File Capture			
Name (6 chars) Date		titude	File Name	Record		
	d/yy> 15	<u>N</u> +	File Name			
Comment Time	Get Time Lot	ngitude				
			Lea	ave b	lank	
- Physical Data	Carbonate D)ata	Nutrient Data			
Salinity	TA (µmol/		Total P (µmol/kg	SW)		
temperature(C)	TCO2 (µm	ol/kgSW)	Total Si (µmol/kg	(SW)		
Pressure (dbars)	pH (chose	n scale)				
	fCO2 wat	or (ustro)	Air-sea Flux			
	7002 Wat	er (pauli)	pCO2 Air (µatm)	_		
Adjusted Conditions	pCO2 wate	er (µatm)	-			
Temperature (C)			Windspeed	1		
Pressure(dbars)				m/s		
					Clear	
Preferences		-				
CO2 Constants Lueker et	əl., 2000	Total Boron	Lee et al., 2010		Carlove cal	
KHSO4 Dickson, 1	990	Air-sea Flux	K Ho et al., 2006		Select	
a fair an				read		

_

These are needed because the equilibrium constants are functions of salinity, temperature, and pressure; also total boron is estimated from salinity

Physical Data	Carbonate Data	- Nutrient Data
Salinity	TA (µmol/kgSW)	Total P (µmol/kgSW)
temperature(C)	TCO2 (µmol/kgSW)	Total Si (µmol/kgSW)
Pressure (dbars)	pH (chosen scale)	
	fCO2 water (µatm)	Air-sea Flux pCO2 Air (µatm)
Adjusted Conditions	pCO2 water (µatm)	
Temperature (C)		Windspeed
		m/s 🔹
Pressure(dbars)		
		Clear

Pressure here is gauge pressure, *i.e.* zero at the sea surface (also 1 dbar \approx pressure exerted by 1 m of seawater)

Remember: only 2 carbonate system measurements are needed to define the chemical state of the system for a particular *S*, *T*, and *p*

Physical Data	Carbonate Data	- Nutrient Data
Salinity	TA (µmol/kgSW)	Total P (µmol/kgSW)
temperature(C)	TCO2 (µmol/kgSW)	Total Si (µmol/kgSW)
Pressure (dbars)	pH (chosen scale)	
	fCO2 water (µatm)	Air-sea Flux pCO2 Air (µatm)
Adjusted Conditions	pCO2 water (µatm)	
Temperature (C)		Windspeed
		m/s 🔹

If you have more than 2 of these with non-zero values, then the top two are the ones that are used for the calculation

Leaving "Nutrient Data" blank is the same as entering zero total concentrations

Physical Data	Carbonate Data	- Nutrient Data
Salinity	TA (µmol/kgSW)	Total P (µmol/kgSW)
temperature(C)	TCO2 (µmol/kgSW)	Total Si (µmol/kgSW)
Pressure (dbars)	pH (chosen scale)	
	fCO2 water (µatm)	Air-sea Flux pCO2 Air (µatm)
djusted Conditions	pCO2 water (µatm)	
emperature (C)		Windspeed
		m/s 🔻

Leaving "Adjusted Conditions" blank repeats the values above Leaving "Air-sea Flux" blank is OK, but yields a zero result

S = 35Surface sea water from the central North Atlantic $t = 18 \,^{\circ}\text{C}$ Nutrient concentrationsp = 0 dbar (sea surface)assumed to be negligible

hysical Data	Carbonate Data	Nutrient Data
Salinity	TA (µmol/kgSW)	Total P (µmol/kgSW)
35	2300	
temperature(C)	TCO2 (µmol/kgSW)	Total Si (µmol/kgSW)
18	2025	
Pressure (dbars)	pH (chosen scale)	
	fCO2 water (µatm)	Air-sea Flux
usted Conditions	pCO2 water (µatm)	pCO2 Air (µatm)
mperature (C)		Windspeed
		m/s 🔻
ressure(dbars)		m/s 🔻
ressure(dbars)		
		Clea

Total Alkalinity = 2300 μmol kg⁻¹ Total Dissolved Inorganic Carbon = 2025 μmol kg⁻¹

The parameters provided originally are repeated here together with a variety of calculated results

Salinity TA (µmol/kgSW) HCO3 (µmol/kgSW) Si Alk (µmol/kgSW) 35.000 2300.000 1821.128 0.000 temperature(C) TCO2 (µmol/kgSW) CO3 (µmol/kgSW) Revelle 18.000 2025.000 192.179 10.115 Pressure pH CO2 (µmol/kgSW) Ω Ca 0.000 8.103 11.693 4.589 fCO2 (µatm) B Alk (µmol/kgSW) Ω Ar 341.034 90.517 2.967 Nutrient Data pCO2 (µatm) OH (µmol/kgSW) xCO2 (dry @ 1 342.223 4.005 atm) (ppm) 349.196	Physical Parameters	Carbonate Parameters	Auxillary Results	
temperature(C) TCO2 (μmol/kgSW) CO3 (μmol/kgSW) Revelle 18.000 2025.000 192.179 10.115 Pressure pH CO2 (μmol/kgSW) Ω Ca 0.000 8.103 11.693 4.589 fCO2 (μatm) B Alk (μmol/kgSW) Ω Ar 341.034 90.517 2.967 Nutrient Data pCO2 (μatm) OH (μmol/kgSW) xCO2 (dry @ 1 atm) (ppm) 342.223 4.005 atm) (ppm)	Salinity	TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Si Alk (µmol/kgSW)
18.000 2025.000 192.179 10.115 Pressure pH CO2 (µmol/kgSW) Ω Ca 0.000 8.103 11.693 4.589 fCO2 (µatm) B Alk (µmol/kgSW) Ω Ar 341.034 90.517 2.967 Nutrient Data pCO2 (µatm) OH /µmol/kgSW) xCO2 (dry @ 1 atm) (ppm) Total P (µmol/kgSW) 342.223 4.005 349.196	35.000	2300.000	1821.128	0.000
Pressure pH CO2 (μmol/kgSW) Ω Ca 0.000 8.103 11.693 4.589 fCO2 (μatm) B Alk (μmol/kgSW) Ω Ar 341.034 90.517 2.967 Nutrient Data pCO2 (μatm) OH (μmol/kgSW) xCO2 (dry @ 1 atm) (ppm) Total P (umol/kgSW) 349.196 349.196	temperature(C)	TCO2 (µmol/kgSW)	CO3 (µmol/kgSW)	Revelle
0.000 8.103 11.693 4.589 fC02 (μatm) B Alk (μmol/kgSW) Ω Ar 341.034 90.517 2.967 Nutrient Data pC02 (μatm) OH (μmol/kgSW) xC02 (dry @ 1 atm) (ppm) Total P (umol/kgSW) 349.195 349.195	18.000	2025.000	192.179	10.115
fCO2 (μatm) B Alk (μmol/kgSW) Ω Ar 341.034 90.517 2.967 Nutrient Data pCO2 (μatm) OH (μmol/kgSW) xCO2 (dry @ 1 atm) (ppm) Total P (umol/kgSW) 342.223 4.005 349.196	Pressure	рН	CO2 (µmol/kgSW)	ΩCa
341.034 90.517 2.967 Nutrient Data pCO2 (µatm) OH (µmol/kgSW) xCO2 (dry @ 1 atm) (ppm) Total P (umol/kgSW) 342.223 4.005 349.195	0.000	8.103	11.693	4.589
Nutrient Data pC02 (µatm) OH (µmol/kgSW) xC02 (dry @ 1 atm) (ppm) Total P (umol/kgSW) 342.223 4.005 349.196		fCO2 (µatm)	B Alk (µmol/kgSW)	ΩAr
Total P (umol/kgSW) 342.223 4.005 atm) (ppm) 349.196		341.034	90.517	2.967
Total P (umol/kgSW)	Nutrient Data	pCO2 (µatm)	OH (µmol/kgSW)	xCO2 (dry @ 1
349 196	Total P (umol/kgSW)	342.223	4.005	atm) (ppm)
0.000	0.000		P Alk (µmol/kgSW)	349,196
Total Si (umol/kgSW) Air-sea CO2 Flux 0.000	Total Si (umol/kgSW)	Air-sea CO2 Flux	0.000	
0.000 Flux (mmol/m^2/d)	Contraction of the second s	Flux (mmol/m^2/d)		
0.000		0.000		
$R = \frac{\partial \ln[CO_2]}{\partial [CO_2]} \frac{\partial [CO_2]}{\partial C_T} = O(arggonite) \frac{[Ca^{2+}][CO_3^{2-}]}{[Ca^{2+}][CO_3^{2-}]}$		2100 1 /20		$[C_{2}^{2+}][C_{0}^{2-}]$
$R = \frac{\partial \ln[CO_2]}{\partial I} = \frac{\partial [CO_2]}{\partial I} / \frac{\partial C_T}{\partial I} \qquad \Omega(aragonite) = \frac{[Ca^{2+}][CO_3^{2-}]}{IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	$R = \frac{OIII[CO_2]}{2} =$	$=\frac{O[CO_2]}{OC_1}$	$\Omega(aragonite) \stackrel{\prime}{=}$	
$R = \frac{\partial \ln[CO_2]}{\partial \ln C_T} = \frac{\partial[CO_2]}{[CO_2]} / \frac{\partial C_T}{C_T} \qquad \Omega(aragonite) = \frac{\int [Ca^{2+}][CO_3^{2-}]}{K_{sp}(aragonite)}$	∂lnC⊤	$[CO_{2}] / C_{T}$	(K _{sp} (aragonite)

WHAT HAPPENS IF WE WARM UP THAT WATER?

Increase temperature from 18 °C to 25 °C

Can do the calculation twice, changing the temperature from 18 to 25 °C or can take advantage of the "Adjusted Conditions"

Salinity 35
temperature(C)
18
Pressure (dbars)

Adjusted Condit	tions
Temperature (C)
Pressure(dbars	3)

Carbonate Data
TA (µmol/kgSW)
2300
TCO2 (µmol/kgSW)
2025
pH (chosen scale)
fCO2 water (µatm)
pCO2 water (µatm)

Nutrie	ent Data	
Tot	al P (µmol/kgSW)	
Tot	al Si (µmol/kgSW)	
Aires	a Flux	
	Sector Sector Sector	
pcc	02 Air (µatm)	

pCO2 Air (µatm)		
Windspeed		
	m/s	-

Can do the calculation twice, changing the temperature from 18 to 25 °C or can take advantage of the "Adjusted Conditions"

	-		
	atur	e(C)	
ssur	e (d	bars)
3	3	nperatur }	nperature(C)

Adjusted Conditions	
Temperature (C)	
25	
Pressure(dbars)	
<u>.</u>	-10

Ca	arbonate Data
1	TA (µmol/kgSW)
	2300
1	TCO2 (µmol/kgSW)
	2025
	pH (chosen scale)
-	fCO2 water (µatm)
	pCO2 water (µatm)
9	

Nutrient Data		
Total P (µmol/kgSW)		
Total Si (µmol/kgSW)		
Air-sea Flux		
pCO2 Air (µatm)		
pooz Ali (patiti)		
Windspeed		
	m/s	

Clear

t = 18 °C The change of temperature is for a closed system.

Results at Input	Results at Adjusted Cond	litions	
Physical Parameters	Carbonate Parameters	Auxillary Results	Ci Alla (una al (lua Cia))
Salinity 35.000	TA (µmol/kgSW) 2300.000	HCO3 (µmol/kgSW) 1821.128	Si Alk (µmol/kgSW) 0.000
temperature(C)	TCO2 (µmol/kgSW)	CO3 (µmol/kgSW)	Revelle
18.000 Pressure	2025.000 pH	192.179 CO2 (µmol/kgSW)	10.115 Ω Ca
0.000	8.103	11.693	4.589
	FCO2 (µatm) 341.034	B Alk (µmol/kgSW) 90.517	Ω Ar 2.967
Nutrient Data Total P (umol/kgSW)	pCO2 (µatm) 342.223	OH (µmol/kgSW) 4.005	xCO2 (dry @ 1 atm) (ppm)
0.000		P Alk (µmol/kgSW) 0.000	349.196
Total Si (umol/kgSW) 0.000	Air-sea CO2 Flux Flux (mmol/m^2/d) 0.000		

t = 25 °C The change of temperature is for a closed system.

Physical Parameters Carbonate Parameters Auxillary Results Salinity TA (μmol/kgSW) HCO3 (μmol/kgSW) 35.000 2300.000 1816.992 temperature(C) TCO2 (μmol/kgSW) CO3 (μmol/kgSW) 25.000 Pressure PH 0.000 7.997 12.870 fCO2 (μatm) B Alk (μmol/kgSW)	Si Alk (µmol/kgSW 0.000 Revelle 10.008 Ω Ca
35.000 2300.000 1816.992 temperature(C) TCO2 (µmol/kgSW) CO3 (µmol/kgSW) 25.000 195.138 195.138 Pressure pH CO2 (µmol/kgSW) 0.000 7.997 12.870	0.000 Revelle 10.008
temperature(C) TCO2 (µmol/kgSW) CO3 (µmol/kgSW) 25.000 2025.000 195.138 Pressure pH CO2 (µmol/kgSW) 0.000 7.997 12.870	Revelle 10.008
25.000 195.138 Pressure pH CO2 (µmol/kgSW) 0.000 7.997 12.870	10.008
Pressure pH CO2 (µmol/kgSW) 0.000 7.997 12.870	
0.000 7.997 12.870	ΩCa
fCO2 (µatm) B Alk (µmol/kgSW)	4.697
	ΩAr
453.285 86.764	3.096
Nutrient Data pCO2 (µatm) OH (µmol/kgSW)	xCO2 (dry @ 1
Total P (umol/kgSW) 454.736 5.978	atm) (ppm)
0.000 P Alk (µmol/kgSW)	469.117
Total SI (unioi/kgSW)	
0.000 Flux (mmol/m^2/d) 0.000	

WHAT HAPPENS TO PH OR $P(CO_2)$?

t = 18 °C The change of temperature is for a closed system.

Results at Input	Results at Adjusted Cond	ditions	
Physical Parameters	Carbonate Parameters	Auxillary Results	
Salinity	TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Si Alk (µmol/kgSW)
35.000	2300.000	1821.128	0.000
temperature(C)	TCO2 (µmol/kgSW)	CO3 (µmol/kgSW)	Revelle
18.000	2025.000	192.179	10.115
Pressure	рН	CO2 (µmol/kgSW)	ΩCa
0.000	8.103	11.693	4.589
	FCO2 (µatm)	B Alk (µmol/kgSW)	ΩAr
	341.034	90.517	2.967
Nutrient Data	pCO2 (µatm)	OH (µmol/kgSW)	xCO2 (dry @ 1
Total P (umol/kgSW)	342.223	4.005	atm) (ppm)
0.000		P Alk (µmol/kgSW)	349.196
Total Si (umol/kgSW)	Air-sea CO2 Flux	0.000	
0.000	Flux (mmol/m^2/d)		
	0.000		

t = 25 °C The change of temperature is for a closed system.

esults at Input	Results at Adjusted Condit	tions	
Physical Parameters	- Carbonate Parameters	- Auxillary Results	
Salinity	TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Si Alk (µmol/kgSW)
35.000	2300.000	1816.992	0.000
temperature(C)	TCO2 (µmol/kgSW)	CO3 (µmol/kgSW)	Revelle
25.000	2025.000	195.138	10.008
Pressure	pH	CO2 (µmol/kgSW)	ΩCa
0.000	7.997	12.870	4.697
	fCO2 (µatm)	B Alk (µmol/kgSW)	ΩAr
	453.285	86.764	3.096
utrient Data	pCO2 (µatm)	OH (µmol/kgSW)	xCO2 (dry @ 1
Total P (umol/kgSW)	454.736	5.978	atm) (ppm)
0.000		P Alk (µmol/kgSW)	469.117
Total Si (umol/kgSW)	- Air-sea CO2 Flux	0.000	
0.000	Flux (mmol/m^2/d)		
	0.000		

IF WE MEASURE PH IN THE LABORATORY, WE CAN USE THIS APPROACH TO CONVERT IT TO AN ESTIMATED IN SITU VALUE

Laboratory measurement of pH at 25 °C ("zero" pressure)

Physical Data	Carbonate Data	Nutrient Data	
Salinity	TA (µmol/kgSW)	Total P (µmol/kgSW)	
35	2300		
temperature(C) 25	TCO2 (µmol/kgSW)	Total Si (µmol/kgSW)	
Pressure (dbars)	pH (chosen scale)		
0	8.00 FCO2 water (µatm)	Air-sea Flux pCO2 Air (µatm)	
justed Conditions	pCO2 water (µatm)		
emperature (C)		Windspeed	
В		m/s 🔻	
ressure(dbars)			
000		Clear	

in situ conditions 8 °C @ 1,000 m depth

Calculation is for a closed system.

esults at Input	Results at Adjusted Condi	tions	
Physical Parameters	Carbonate Parameters	Auxillary Results	
Salinity	TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Si Alk (µmol/kgSW
35.000	2300.000	1814.286	0.000
temperature(C)	TCO2 (µmol/kgSW)	CO3 (µmol/kgSW)	Revelle
25.000	2023.271	196.225	9.975
Pressure	pН	CO2 (µmol/kgSW)	ΩCa
0.000	8.000	12.760	4.724
	fCO2 (µatm)	B Alk (µmol/kgSW)	ΩAr
	449.433	87.254	3.113
utrient Data	pCO2 (µatm)	OH (µmol/kgSW)	xCO2 (dry @ 1
Total P (umol/kgSW)	450.871	6.020	atm) (ppm)
0.000		P Alk (µmol/kgSW)	465.129
Total Si (umol/kgSW)	Air-sea CO2 Flux	0.000	
0.000	Flux (mmol/m^2/d)		
	0.000		

total dissolved inorganic carbon stays constant!

Calculation is for a closed system.

Results at Input	Results at Adjusted Condit	tions	
Physical Parameters	- Carbonate Parameters	Auxillary Results	
Salinity	TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Si Alk (µmol/kgSW)
35.000	2300.000	1827.364	0.000
temperature(C)	TCO2 (µmol/kgSW)	CO3 (µmol/kgSW)	Revelle
8.000	2023.271	185.735	10.215
Pressure	pH	CO2 (µmol/kgSW)	Ω Ca
1000.000	8.225	10.173	3.666
	fCO2 (µatm)	B Alk (µmol/kgSW)	ΩAr
	216.770	99.040	2.352
Nutrient Data	pCO2 (µatm)	OH (µmol/kgSW)	xCO2 (dry @ 1
Total P (umol/kgSW)	217.630	2.132	atm) (ppm)
0.000		P Alk (µmol/kgSW)	219.912
	Air-sea CO2 Flux	0.000	
Total Si (umol/kgSW)			
0.000	Flux (mmol/m^2/d) 0.000		

total dissolved inorganic carbon stays constant!

TIME TO TRY THIS FOR YOURSELVES

THE KINDS OF CHEMICAL QUESTIONS WE NEED TO BE ABLE TO ANSWER

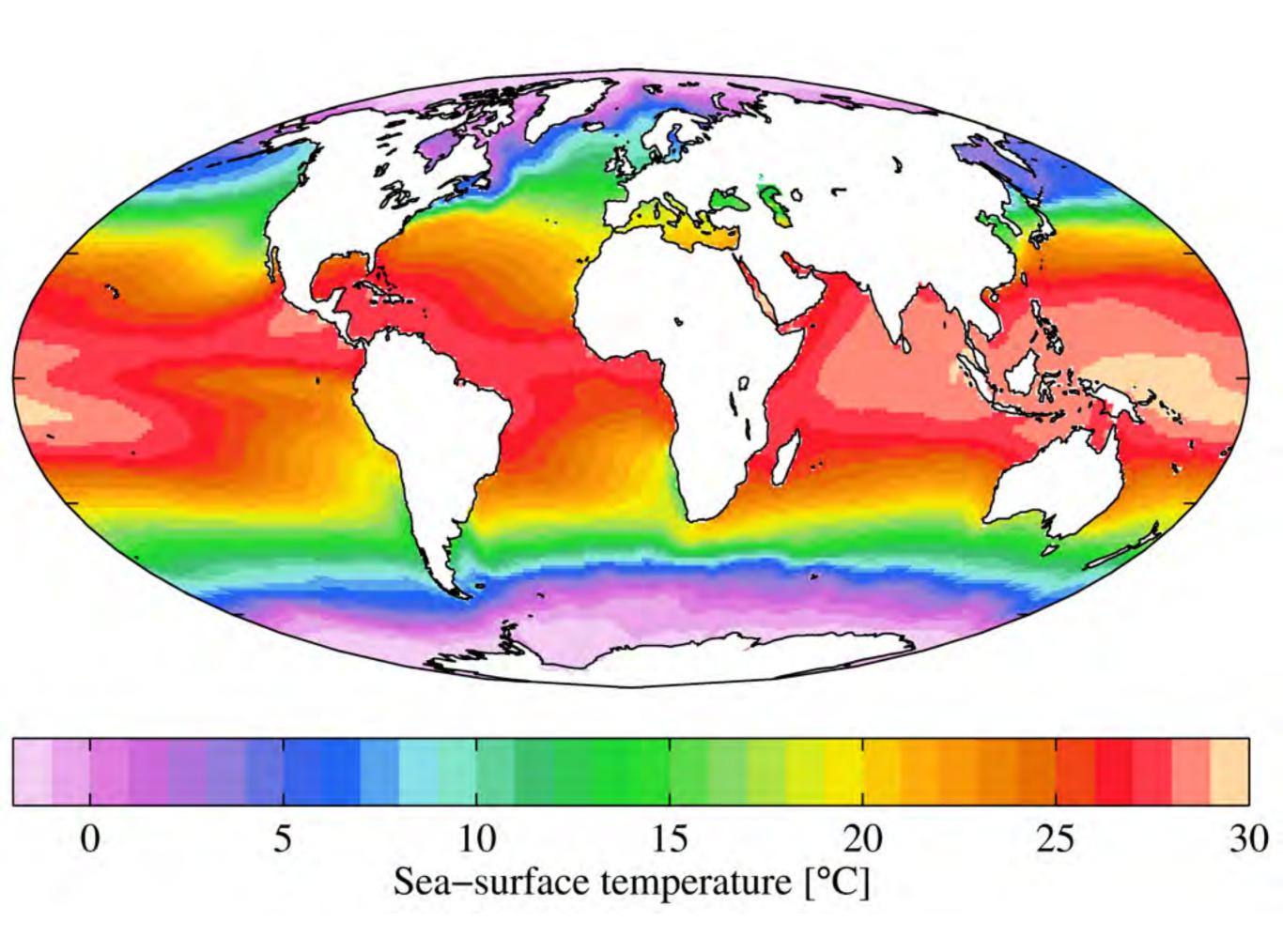
- How can I estimate the CO₂ composition of a sample of sea water?
- If the CO₂ level in the atmosphere increases by 300 ppm, how much will the pH in the surface ocean change?
- What will be the consequent change in the saturation state of aragonite?
- Will this be the same all over the oceans? Why? (or Why not?)
- How should I modify the CO₂ composition of a sample of sea water to reach a desired target composition?

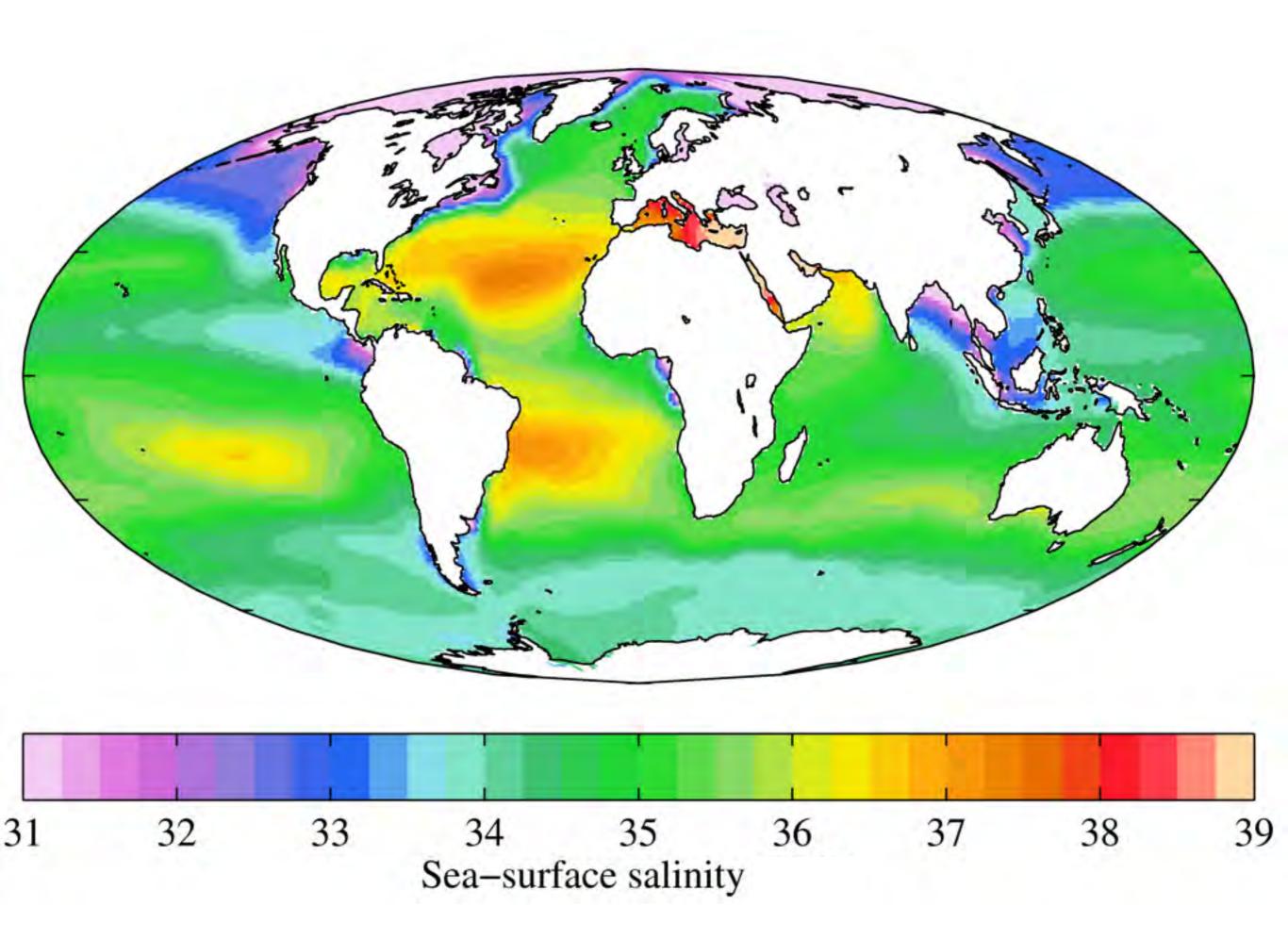
If the CO_2 level in the atmosphere increases by 300 ppm, how much will the pH in the surface ocean change?

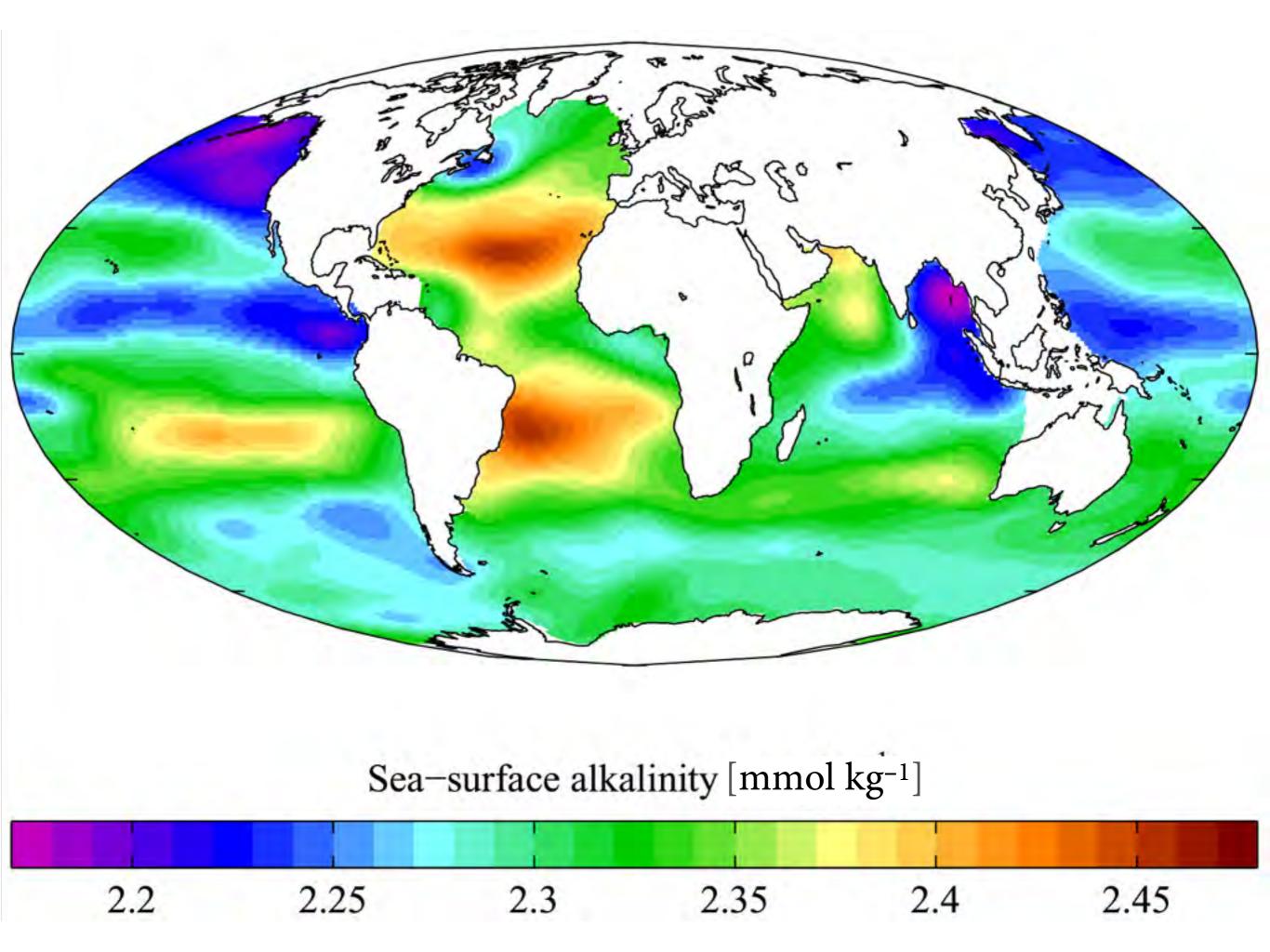
What will be the consequent change in the saturation state of aragonite?

What information do we need to make this calculation?

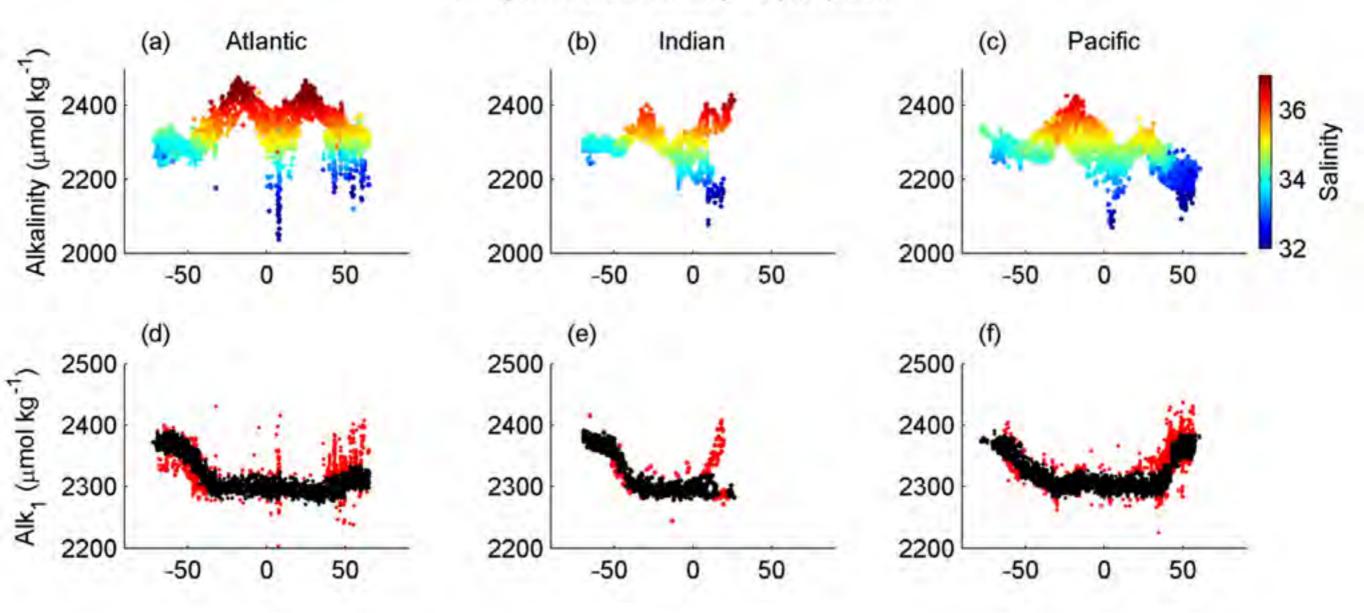
- 1. Estimates of *S*, *t*, and P (= 0 at sea surface).
- 2. $pH = f(A_T, p(CO_2))$

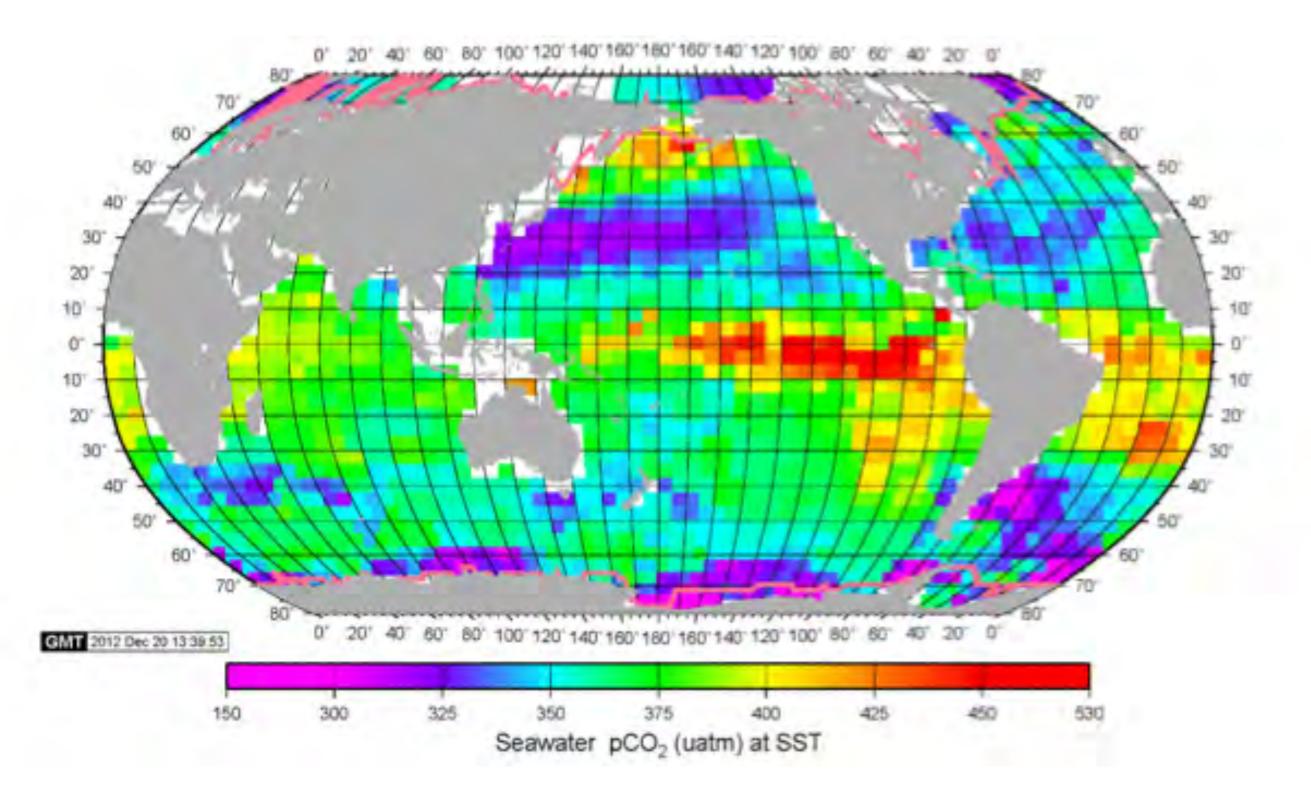

The simplest assumption (which I recommend here) is to assume that the change in atmospheric $p(CO_2)$ does not affect *S*, *t*, & *A*_T.


A. Can do the calculation for average seawater values. $S = 35; t = 18 \text{ °C}; A_T = 2300 \text{ }\mu\text{mol kg}^{-1}$ Need to assume an initial $p(CO_2), e.g. 400 \text{ }\mu\text{atm}$ Repeat calculation for increased $p(CO_2), i.e. 700 \text{ }\mu\text{atm}$ If the CO_2 level in the atmosphere increases by 300 ppm, how much will the pH in the surface ocean change?


What will be the consequent change in the saturation state of aragonite?

Will this be the same all over the oceans?


- 1. Need estimates of range of S, t, and A_T .
- 2. Repeat a few calculations to get an estimate of the likely variability in the pH change and in the the aragonite saturation state change



C.H. Fry et al. / Marine Chemistry 174 (2015) 46-57

$$Alk_1 = \frac{Alk_m}{S} \times 35.$$

Reference year 2005

THE KINDS OF CHEMICAL QUESTIONS WE NEED TO BE ABLE TO ANSWER

- How can I estimate the CO₂ composition of a sample of sea water?
- If the CO₂ level in the atmosphere increases by 300 ppm, how much will the pH in the surface ocean change?
- What will be the consequent change in the saturation state of aragonite?
- Will this be the same all over the oceans? Why? (or Why not?)
- How should I modify the CO₂ composition of a sample of sea water to reach a desired target composition?

How should I modify the CO₂ composition of a sample of sea water to reach a desired target composition?

Need to know the initial composition of your water

Need to define the target (pH, $p(CO_2)$, $\Omega(arag)$)

Need to decide what form of modification is simpler (or more relevant)

Often it is most straightforward to keep A_T approximately constant, and to change the C_T by addition/removal of CO₂. It is also simpler to monitor pH: rather than $p(CO_2)$ or $\Omega(arag)$