

CO₂ system Calculation Part 2

Using CO₂ system calculations for experimental CO₂ manipulations

Introduction

- Impact of changing seawater chemistry as a result of OA on marine organisms is not well constrained
- Experimental data are needed to understand the consequences
- Perturbation experiments of seawater chemistry are key approaches to investigating biological responses to increasing pCO2
- We will examine several techniques carried out in closed and open cell vessels and discuss pros and cons of these approaches

Main approaches to manipulate CO2-system chemistry

- Change TCO2 at constant TA
- Gas bubbling
- Add high-CO₂ sea water
- Add CO_3^2 and/or HCO_3^2 followed by strong acid
- Change TA at constant TCO₂
- Add strong acids and base
- Change TA & TCO2
- Add CO_3^{2-} and/or HCO_3^{-}
- Manipulate [Ca²⁺]

We will follow modified Gattuso et al. 2009 examples

also section 2 of Guide to Best Practices

Assumptions:

- Seawater pCO2 Target pCO2 Salinity Temperature Depth Phosphate & Silicate TA
- = 384 µatm (Year = 2007)
- = 793 µatm (Year = 2100)
- = 34.9
- = 18.9°C
- = o m
- $e = 0.63 \mu mol/kg SW \& 7.63 \mu mol/kg SW$ = 2325

Except we will use Lueker et al. 2000 K1,K2, Dickson 1990 KHSO4 constants ; pH-total scale ; Uppstrom et al., 2010 Boron constant

Bubbling gas in a vessel is fairly easy effective way to manipulate CO₂system chemistry

Systems that have been used:

- control atmospheric co2 and then bubble that into container
- pH-stat- pH is monitored continuously and controller opens or closes valves when pH goes above or below the target value

Lets get started "bubbling"

Scenario: You have a seawater sample that has the following conditions-"2007 condition"
 Sal =34.9 T= 18.9C pH= 8.07 TA= 2325 µmol/kg
 Nutrients : 0.63 umol/kgsw Tphos; 7.63 umol/kgsw TSi

Now, to "mimic" year 2100, you bubble in a CO2 —air mixture of 793 µatm— what is your final pH? Note that we are assuming that TA will not change significantly over the next 100 years.

Constants: K1,K2:Leuker, KSO4: Dickson, pHtot, Bt: Uppstrom

(I) CO2Calc v4.0.4	Manual Input	Batch Input	Tools	Report	About	Install
Manual Calculation: Inpu	t				Input	Results
Sample Metadata (Optional)						
Name Date	Set Date Time	Set Time	Latitude		Longitude	
2007Input <m d="" td="" yy<=""><td>yy> 15 🔹</td><th>]: •]: •</th><td></td><td>N -</td><td></td><td>w •</td></m>	yy> 15 🔹]: •]: •		N -		w •
Comment						
fixed TA				•	Clear Me	etadata
Sample Data						
Physical Data (All Fields Required)	Carbonate Da	ta (Two Fields Requ	ired) —	Nutrient Data	(Optional) —	
Salinity		o fields except both	'n	Total P (µmol	/kgSW)	
34.9		CO2 together		0.63		
Temperature (°C)	TA (µmol/kg	5w)		Total Si (µmo	l/kgSW)	
18.9				7.35		
Pressure (dbars)	TCO2 (µmol/	(kgSW)				
				Additional Data	a (Optional) —	
	pH (chosen s	scale)		Total Ca (cho	ose units)	
Adjusted Conditions (Optional)	8.07					•
Temperature (°C)	fCO2 water	(µatm)				
				Air-Sea Flux D		
Pressure (dbars)	pCO2 water	(µatm)		pCO2 Air (µat	tm)	
	CO3 (µmol/k	gSW)		Windspeed (c	hoose units)	•
Clear Sample Data						

"2007 CONDITIONS"

V) H0 2325.000 C0 gSW) C0 2061.391 I ale) B 8.070 I atm) OI 377.975 I	xillary Results CO3 (µmol/kgSW) 1860.748 O2 (µmol/kgSW) 12.639 Alk (µmol/kgSW) 83.246 H (µmol/kgSW) 4.038	Ω Ca (Using: Ca from Salinity CO3 from Carbonates) 4.495 Ω Ar (Using: Ca from Salinity CO3 from Carbonates) 2.913 Ω Ca (Using User Values)
2325.000 gSW) CC 2061.391 ale) B 8.070 atm) Ol 377.975	1860.748 O2 (µmol/kgSW) 12.639 Alk (µmol/kgSW) 83.246 H (µmol/kgSW)	Ca from Salinity CO3 from Carbonates) 4.495 Ω Ar (Using: Ca from Salinity CO3 from Carbonates) 2.913
gSW) CC 2061.391 B ale) B 8.070 0 atm) OI 377.975 0	O2 (µmol/kgSW) 12.639 Alk (µmol/kgSW) 83.246 Η (µmol/kgSW)	CO3 from Carbonates) 4.495 Ω Ar (Using: Ca from Salinity CO3 from Carbonates) 2.913
2061.391 ale) B 8.070 atm) OI 377.975	12.639 Alk (µmol/kgSW) 83.246 H (µmol/kgSW)	Ω Ar (Using: Ca from Salinity CO3 from Carbonates) 2.913
ale) B 8.070 atm) Oi 377.975	Alk (µmol/kgSW) 83.246 H (µmol/kgSW)	Ca from Salinity CO3 from Carbonates) 2.913
8.070 atm) OI 377.975	83.246 H (µmol/kgSW)	Ca from Salinity CO3 from Carbonates) 2.913
atm) OI 377.975	H (µmol/kgSW)	2.913
377.975		
	4.038	Ω Ca (Using User Values)
-		
atm) P	Alk (µmol/kgSW)	
379.279	0.701	Ω Ar (Using User Values)
SW) Si	i Alk (µmol/kgSW)	
188.004	0.268	
	evelle	
	10.452	
10255 185	opm)	
1	SW) S 188.004 R ol/kgSW) x	SW) 188.004 Si Alk (µmol/kgSW) 0.268 Revelle 10.452 xCO2 (dry @ 1 atm)

NOW 793 µatm (2100)

	CO2Calc v4.0.4							
CO2Calc v4.0.4	Manual Input Batch Input	Tools Report	About	Insta				
anual Calculation: In	put		Input	Result				
mple Metadata (Optional)								
ame Date		Latitude	Longitude					
comment	///////////////////////////////////////	N •		W •				
		* *	Clear M	etadata				
mple Data — Physical Data (All Fields Required) —	Carbonate Data (Two Fields Required	STATE DATES AND A CONTRACTOR OF						
Salinity 34.9	Enter any two fields except both fCO2 and pCO2 together	Total P (µmo 0.63	Total P (µmol/kgSW) 0.63					
Temperature (°C)	TA (µmol/kgSW)	Total Si (µmo	Total Si (µmol/kgSW)					
18.9	2325	7.350						
Pressure (dbars)	TCO2 (µmol/kgSW)	Additional Dat	a (Ostional)					
	pH (chosen scale)	Total Ca (cho	15 (0)					
Adjusted Conditions (Optional)								
	L			•				
Temperature (°C)	fCO2 water (µatm)		ata (Ontional)					
			ata (Optional)					
Temperature (°C) Pressure (dbars)	fC02 water (μatm) pC02 water (μatm) 793	Air-Sea Flux D pCO2 Air (µa						

Clear Sample Data

At 793 uatmpH=7.793

Ŧ

put Conditions	Computed Con	stants		
Physical Param	eters	Carbonate	Auxillary Results	
Salinity		TA (µmol/kgSW)	HCO3 (µmol/kgSW)	Ω Ca (Using:
	34.900	2325.000	2054.317	Ca from Salinity CO3 from Carbonates)
Temperature ((°C)	TCO2 (µmol/kgSW)	CO2 (µmol/kgSW)	2.621
	18.900	2190.343	26.425	Ω Ar (Using:
Pressure (dba	rs)	pH (chosen scale)	B Alk (µmol/kgSW)	Ca from Salinity
	0.000	7.793	48.560	CO3 from Carbonates)
Density (kg m	1^3)	fCO2 water (µa tm)	OH (µmol/kgSW)	1.698
	1024.971	790.273	2.132	Ω Ca (Using User Values)
		pCO2 water (µatm)	P Alk (µmol/kgSW)	
- Nutrient Data –		793.000	0.663	Ω Ar (Using User Values)
Total P (µmol/		CO3 (µmol/kgSW)	Si Alk (µmol/kgSW)	
	0.630	109.600	0.144	
Total Si (µmol			Revelle	
	7.350	Calcium	14.245	
- Air-Sea CO2 Flu		Calculated (µmol/kgSW) 10255.185	xCO2 (dry @ 1 atm) (ppm)	
	1 2/0)	User Value	810.116	

TA constant Summary: Bubbling of CO2 gas

Technique: Bubble different CO₂ gas mixtures in seawater

- (1) air and CO2
- (2) CO2-free air and CO2
- (3) CO2-free air, air and CO2

(1) pH-stat or pCO2-stat

(2) bubbling with premixed gases (purchased or made with mass flow controllers or gas mixing pumps)

In both cases, TCO2 increased and TA remained same

Advantages: TA assumed constant (or measured)

Disadvantages: Requires daily calibration; Can cause coagulation of organic matter, or unwanted turbulence; changes in alkalinity because of precipitation or dissolution of caco3 not accounted for

seacarb: pgas

TCO2 increased TA constant

Bubbling of CO₂ gas

Example: Estimate the volume of CO2 gas needed to adjust pCO2 from 384 to 793 µatm

@STP:

 $L of CO_{(g)} = \Delta TCO_2 (mol kg^{-1} SW) * Mol. Wt. CO_2 / density of CO_{(g)}$

L of CO2_(g) = (0.000129 mol kg⁻¹ SW * 44.01 g CO2 mol⁻¹)/1.808 g L⁻¹ = 0.00314 L kg⁻¹ SW = 3.14 mL kg⁻¹ SW

In reality, this calculation is not very useful. The best way to determine volume of gas needed is to experiment with it!

TA constant Adding high-CO2 water

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg⁻¹)

Water mass #1: pCO2=10⁶ µatm (CO2-saturated)

Water mass #2: pCO2=384 μatm Desired water mass pCO2: pCO2=793 μatm

Q: What proportions of water masses #1 and #2 should be mixed to achieve the desired concentration?

TA constant Adding high-CO2 water

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg⁻¹)

Water mass #1: pCO2=10⁶ μatm -> TCO2 = 35666 μmol kg⁻¹ Water mass #2: pCO2=384 μatm -> TCO2 = 2063 μmol kg⁻¹ Desired mass: pCO2=793 μatm -> TCO2 = 2190 μmol kg⁻¹

TA constant Adding high-CO2 water

Technique: Mixing of two water masses (T=18.9°C; S=34.9; TA=2325 μmol kg⁻¹)

 Water mass #1: pCO2=10⁶ μatm
 -> TCO2 = 35666 μmol kg⁻¹

 Water mass #2: pCO2=384 μatm
 -> TCO2 = 2063 μmol kg⁻¹

 Desired mass:
 pCO2=793 μatm
 -> TCO2 = 2190 μmol kg⁻¹

Basic Mixing Equation:

 $Conc_1 \times Vol_1 + Conc_2 \times (Vol_2 - Vol_1) = Conc_3 \times (Vol_2)$

35666 μ mol kg⁻¹ × (V₁) + 2063 μ mol kg⁻¹ × (1-V₁) = 2190 μ mol kg⁻¹ × (1)

Vol₁ = 0.00378 kg of high pCO2 seawater 1-V₁ = 0.99622 kg of normal pCO2 seawater

TA constant Summary: Adding high-CO2 water

Technique: Mixing of two water masses

- 1. Water with normal values (e.g. pCO2=373 μatm)
- 2. Water that has been saturated with CO₂ (pCO₂=10⁶ μ atm)

Advantages:

- Natural simulation of future conditions
- No effect on TA

Disadvantages:

• High pCO2 waters can easily lose CO2 due to gas exchange

Seacarb function: pmix

TCO2 changed TA changed Adding CO3²⁻ and/or HCO3⁻ (no acid addition)

- **Technique:** Add CO₃ and/or HCO₃ to obtain desired TCO₂ level
- 1. Closed system:

TA increases by: $2x\Delta[CO3^{2-}]$ and $1x\Delta[HCO3^{-}]$ DIC increases by: $1x\Delta[CO3^{2-}]$ and $1x\Delta[HCO3^{-}]$

2. Open system: DIC equilibrates due to air-sea gas exchange

Advantages:

• Can be used to examine physiological responses to different components of the carbonate chemistry

Disadvantages:

• Both TCO2 and TA changes and not realistic of year 2100

TCO2 increased TA constant Adding CO3²⁻ and/or HCO3⁻ + acid

Technique:

- 1. Add CO3 and/or HCO3 to obtain desired TCO2 level
- 2. Add acid to lower TA to desired target level

Example:

Add 15.3 x 10⁻⁶ mol kg⁻¹ of Na₂CO3
 Add 111.2 x 10⁻⁶ mol kg⁻¹ of NaHCO3

Note that this elevates DIC by 126.5 umol But also elevates TA by 141.8 umol Remember: DIC increases by:1xΔ[CO3²⁻] and 1xΔ[HCO3⁻]

TA increases by: $2x\Delta[CO3^{2-}]$ and $1x\Delta[HCO3^{-}]$

2. Both DIC and TA increased, so reduce TA to initial value by adding 14.18 ml of 0.01N HCl to restore TA to initial value

Adding CO3²⁻ and/or HCO3⁻ + acid

	pCO _{2 sw} (µatm)	рН _{<i>T</i>} (–)	[H ⁺] (a)	TA (b)	DIC (b)	[CO ₂] (b)	[HCO ₃ ⁻] (b)	[CO ₃ ²⁻] (b)	Ω_c (-)	Ω _a (-)
Year 2007	384	8.065	8.6	2325	2065	12.8	1865	187	4.5	2.9
Year 2100	793	7.793	16.1	2325	2191	26.4	2055	110	2.6	1.7

Addition of:										
CO_3^{2-} and HCO_3^- ; closed sys.	400	8.073	8.4	2467	2191	13.3	1977	201	4.8	3.1
followed by acid addition; closed sys.	793	7.793	16.1	2325	2191	26.4	2055	110	2.6	1.7

TCO2 constant TA increased Adding strong acids, bases

Technique: Add strong acids to decrease TA - OR – Add strong bases to increase TA

- 1. In a closed system, DIC remains unchanged
- 2. In an open system, DIC will change due to air-sea gas exchange

Example:

- How much acid do you need to change the alkalinity to cause a pCO2 change from 394 to 793 uatm? Answer 140.8 umol kg⁻¹
- 2. Add 14.08 ml of 0.01N HCl to 1 kg seawater

seacarb function: ppH

Addition of strong acid

	pCO _{2 sw} (µatm)	рН _{<i>T</i>} (-)	[H ⁺] (a)	TA (b)	DIC (b)	[CO ₂] (b)	[HCO ₃ ⁻] (b)	[CO ₃ ²⁻] (b)	Ω _c (–)	Ω _a (–)
Year 2007	384	8.065	8.6	2325	2065	12.8	1865	187	4.5	2.9
Year 2100	793	7.793	16.1	2325	2191	26.4	2055	110	2.6	1.7

Acid addition; closed sys.	793	7.768	17.1	2184	2065	26.4	1940	98	2.3	1.5
Acid addition; open sys.	384	8.042	9.1	2184	194	12.8	1767	167	4	2.6

TCO2 constant TA increased ding strong acids, bases to bring pCO2 to target

Technique: Add strong acids to decrease TA - OR – Add strong bases to increase TA

- 1. In a closed system, DIC remains unchanged
- 2. In an open system, DIC will change due to air-sea gas exchange

Advantages:

Relatively easy to do

Can be used in flow-through systems

Disadvantages:

Not a realistic representation of the CO₂ chemistry but depends on your question

Manipulation of [Ca²⁺]

Technique: Add or reduce the [Ca2+] levels

Causes changes in the CaCO₃ saturation states

Advantages:

Can be used to examine the role of Ca2+ in saturation state and it's effects on organisms

seacarb function: pCa

Summary of Methods

Approach	Target values reached?	Ease of use	Relative cost
Acid addition	No (only pCO2)	***	*
Acid addition and restoration of TA	Yes	*	*
Gas bubbling	Yes	***	***
Mixing with high- CO ₂ seawater	Yes	**	*
Addition of HCO ₃ - and/or CO ₃ ²⁻	No	**	*
Calcium manipulation	No (only Ω)	*	*

- ✓ Understand how your choice of approach affects carbonate chemistry
- \checkmark The more information you have for planning, the better
- ✓ Choose reasonable target conditions
- Know your chemistry...don't rely on CO2calc (or any other program) to know it for you...this is a VERY common mistake
- Biological effects on the chemistry must be considered in experimental design
- Monitor closely before, during, and after chemical manipulations and throughout experiments