

Status of SDG development for Structures, Systems and Components (SDG for SSCs)

S. KUBO

GIF SDC Tack Force Member

(*2) IAEA guidelines are based on NS-R-1, and do not include "DEC" measures

*DBA: Design Basis Accident, DEC: Design Extension Condition, PE: Practically Eliminated

Application policy for SDG for each system (2/2)

SDC	Relevant statement in NS-G	Approach for categorization	Cate gory	Example	
Criterion	<u>A*</u>	Statements in NS-G can be applied to SDG for each system without modification	A	 Single failure criterion Separation of safety systems 	
Criterion	<u>A</u>	Statements can be applied to SDG for each system with modification for SFR	В	 Decay heat removal function Containment function 	
Criterion	N/A*	No relevant statements in NS-G can be found, the point of SDC should be added.	С	 Na reaction Measures for Gen-IV SFR (DEC, PE) 	

* A: Available, N/A: Not available

⇒Comprehensive incorporation of the criteria in SDC and NS-G to SDG for each system

Identification of discussion points for Gen-IV SFR

- Since IAEA NS-G series for LWRs will be used as a basis, discussion points (modification, addition and deletion) of the SDG will be clear by comparing safety features of Gen-IV SFR and LWRs.
- Gen-IV SFR design features to be considered for core, cooling and containment systems are identified in comparison with LWR (PWR) as shown in the following slides.

Discussion points for Gen-IV SFR (Reactor core (1/2))

5th Joint IAEA-GIF Technical Meeting/Workshop on Safety of SFR, IAEA, 23-24 June, 2015

Discussion points for Gen-IV SFR (Reactor core (2/2))

Discussion points for Gen-IV SFR (Reactor coolant system (1/2))

Discussion points for Gen-IV SFR (Reactor coolant system (2/2))

GENTR International Forum

Discussion points for Gen-IV SFR (Containment system)

Concept for containment system for PWR

Concept for containment system for SFR

	PWR	SFR
Load factors	Pressure and temperature generated by energy from coolant which is released into the containment due to LOCA.	Na leakage and combustion are major load factors for containment (Mitigation of thermal effects is more important than pressure tightness.)
Counter- measure s	 Steel CV or PCCV with pressure tightness Systems to reduce temperature and pressure such as containment spray system and residual heat removal system 	 Containment vessel (relatively lower P than LWR). Facilities to prevent Na leakage (Guard pipes/vessel) Facilities to prevent combustion (e.g. Inert gas cell) Facilities to mitigate thermal loads (e.g. Catch-pan, heat insulator)

Table of contents for Reactor Coolant System (Tentative)(1/3)

- 1. INTRODUCTION
- (1) Background
- (2) Objective
- (3) Scope
- (4) Structure
- 2. EXTENT OF THE REACTOR COOLANT STSTEM
- (1) Reactor coolant system
- (2) Connected systems
- (3) Associated systems
- (4) Ultimate heat sink
- **3. GENERAL CONSIDERATIONS IN DESIGN**
- (1) Objectives of the design
- (2) Safety systems
- (3) Safety classification
- (4) Design basis
- (5) Postulated initiating events (internal events)
- (6) Seismic considerations (external events)
- (7) Reliability
- (8) Selection of materials
- (9) Prevention of boundary failure
- (10) Measures against sodium leak and combustion

(11) Prevention of sodium freezing

- (12) Piping design
- (13) Layout considerations
- (14) Interface considerations
- (15) Consideration of containment function
- (16) Considerations of isolation between systems
- (17) Instrumentation and control system
- (18) Calibration, testing, maintenance, repair, replacement, inspection, and monitoring of items important to safety.
- (19) Considerations for multi-unit nuclear power plants

Table of contents for Reactor Coolant System (Tentative)(2/3)

4. SPECIFIC CONSIDERATIONS IN DESIGN

- 4.1 Primary coolant system
 - (1) System functions
 - (2) Integrity of reactor coolant boundary and reactor cover gas
 - boundary (3) Ensuring reactor coolant level
 - (4) Measures against coolant leak
 - (5) Application of natural circulation to remove decay heat
 - (6) Protection against radiation exposure
 - (7) Purification of coolant
 - (8) Component design of primary
 - coolant system
 - a. General
 - b. Reactor vessel
 - c. Reactor vessel internals
 - d. Pump
 - e. Intermediate heat exchanger
 - f. Guard vessel

- 4.2 Secondary coolant system
 - (1) System functions
 - (2) Sodium-water reaction considerations
 - (3) Containment considerations
 - (4) Decay heat removal considerations
 - (5) Cleanup and purification for the secondary coolant
 - (6) Consideration of component design of secondary coolant system

Table of contents for Reactor Coolant System (Tentative)(3/3)

4.3 Decay heat removal system

- (1) System functions
- (2) Containment considerations
- (3) System separation considerations
- (4) Reliability considerations
- (5) Redundancy or diversity considerations
- (6) Natural circulation considerations
- (7) Postulated initiating events
- (8) Monitoring considerations
- (9) Accident management
 - considerations
- (10) Load condition considerations
- (11) Functional test considerations
- (12) Component design considerations
- 4.4 Steam and feed water system
 - (1) System function
 - (2) Breakage prevention considerations
 - (3) Steam generator tube rupture considerations

4.5 Other energy conversion system

- (1) Fundamental function and consideration on accidents
- 4.5 Heat transfer to ultimate heat sink
 - (1) System function
 - (2) Considerations for site and environment

SFR Design Options under GIF (1/2)

- A large size (600 to 1,500 MWe) loop-type reactor with mixed uranium-plutonium oxide fuel and potentially minor actinides, supported by a fuel cycle based upon advanced aqueous processing at a central location serving a number of reactors
- An intermediate-to-large size (300 to 1,500 MWe) pool-type reactor with oxide or metal fuel
- A small size (50 to 150 MWe) modular pool-type reactor with metal alloy fuel, supported by a fuel cycle based on pyrometallurgical processing in facilities integrated with the reactor

SFR Design Options under GIF (2/2)

Core size	Fuel	Plant type	Reactivity control/ shutdown	Decay heat removal	Containment/ confinement
Small (50-150MWe) Middle (300-600MWe) Large (600-1500MWe)	Oxide Metal Nitride	Pool-type Loop-type	Inherent feed back (Doppler, core expansion etc.) Passive mechanism (absorber insertion, gas expansion etc.)	DRACS PRACS IRACS RVACS SGACS	Reactor Building Guard vessel + Upper dome

Concluding Remarks

- Key Structures, Systems and Components SDG
 - Reactor Core
 - Reactor Coolant System
 - Reactor Containment System
- IAEA NS-G series are used as reference
- Discussion points are going to be identified based on the SFR characteristics.
- Design specific issues such as small-large, oxide-metal, poolloop) will be discussed.

Thank you for your attention !!