

JOINT IAEA ORPU - RSTU WEBINAR Nº11

TIPS AND TRICKS FOR THE PRACTICE OF INTERNAL DOSIMETRY IN OCCUPATIONAL RADIATION PROTECTION Wednesday, 7 October 2020

Challenges of the dosimetry of internal exposures

María Antonia López EURADOS – European Radiation Dosimetry Group CIEMAT (Madrid, Spain)

OCCUPATIONAL INTERNAL DOSIMETRY

- Objective: Assessment of the Committed Effective Dose E(50) Sv due to the radionuclides incorporated into the body through inhalation, ingestion, absorption trough intact skin or a wound at the workplace
- Radiation protection frame: individual monitoring of exposed persons to ionizing radiations. The assessment of Effective Dose E (Sv) to confirm compliance with dose limits:

- The **doses due to intakes of radionuclides** can not be obtained directly from measurements but must be assessed from:
 - In-vivo measurements of the retained activity M(Bq) in total body or organs, using whole/partial Body Counters
 - In-vitro measurements of the activity concentration in excreta samples M(Bqd⁻¹, BqL⁻¹)
 - Activity concentration in the air M(Bqm-³)

Or by a combination of these methods

- The interpretation of the monitoring data for the assessment of the intake I(Bq) and Committed Effective Dose E(50) (Sv)
 - requires the application of biokinetic and dosimetric models (ICRP)
 - > the evaluator needs to know or to make assumptions about:
 - Type of intake (acute, chronic),
 - Pathway of intake (inhalation, ingestion, injection, intact skin, wound)
 - Time of intake (elapsed time from the exposure and the measurement)
 - Physical (e.g. particle size) and chemical properties of internal contaminants

ICRP Reference documents

Assessment of Committed Effective Dose E(50) Sv for workers

- ICRP Publications 78, 68, 119 (based on ICRP 60 recommendations)
- New ICRP OIR (Occupational Intakes of Radionuclides) reports, Parts I-V (based on ICRP 103 recommendations)
 - ✓ OIR Part I ICRP Publication 130
 - ✓ OIR Part II ICRP Publication 134
 - ✓ OIR Part III ICRP Publication 137
 - ✓ OIR Part IV ICRP Publication 141
 - ✓ OIR Part V In progress

 $E(50)Sv = \sum_{T} W_{T} \left[\frac{H_{T}^{M}(50) + H_{T}^{F}(50)}{2} \right]$

E(50) is calculated with the use of male and female committed equivalent doses to individual target organs or tissues T, and the integration time following the intake is taken to be 50 years

General Approach:

- A.- Characterization of internal exposure at the workplace
 - Information to be provided (e.g. by the Radiation Protection Officer)
- B.- Design of Routine Monitoring Programs
 - Selection of the Monitoring Techniques + monitoring period
- C.- Individual Monitoring of workers:
 - Direct and Indirect techniques. Monitoring Data M(Bq), M(Bqd⁻¹, BqL⁻¹)
- D.- Assessment of intake and committed effective dose E(50)
 - Interpretation of Monitoring Data
 - Step by step procedure: calculation Intake I (Bq) and dose E(50) Sv
 - Available commercial software: IMBA, AIDE, IDEA-System, Taurus, Cador,...

A.- Characterization of internal exposure at WORKPLACE

- Radionuclides: Type of radiation $\alpha/\beta/\gamma$, Energy, Ie, $T_{1/2}$,... biokinetics (metabolic behaviour inside the body)
- Chemical compound of the radionuclide: Absorption Type (F, M, S) in case of inhalation, depending on the solubility of inhaled material:

□ <u>Type F (Fast)</u> – Short time of the radionuclides in the lungs

□ <u>Type M (Moderate)</u> – Medium time in lungs

□ <u>Type S (Slow)</u> – Long time in lungs

□ New ICRP/OIR Reports: also <u>F/M and M/S materials</u> (e.g. Uranium ICRP 137)

- Particle size of the inhaled aerosol: AMAD, AMATD

<u>AMAD</u>: Activity Median Aerodynamic Diameter of inhaled aerosol Typically, default value: 5 µm (occupational exposures)

B.- Design of Individual monitoring programs:

- ✓ Selection of technique and monitoring period
 - In vivo and in vitro bioassay will allow:

Identification of radionuclides

❖Quantification in terms of activity M (Bq) or M(Bq.d^{-1,} BqL⁻¹)

ISO20553: The objective of the monitoring of workers exposed to a risk of internal contamination is to guarantee the detection of the Committed Effective Dose of 1 mSv/year due to internal exposures

C.- Individual monitoring of workers

Direct techniques using WBC (Whole Body Counters):

In vivo measurements of x-rays and gamma emitters internally deposited in the body, using γ spectrometry M (Bq)

Indirect techniques:

 In vitro measurements of activity concentration of alpha, beta and gamma emitters in excreta samples M (Bqd⁻¹, BqL⁻¹)

Air Samplers: Personal (PAS) or Static (SAS) Air Samplers M (Bqm-³)

Direct techniques using WBC (Whole Body Counters)

In-vivo monitoring – whole/partial body counting NaI(TI) and HPGe detectors. Gamma Spectrometry

Direct techniques using WBC (Whole Body Counters)

In-vivo measurements of gamma emitters in <u>total-body</u>:

- Determination of fission and activation products and other radionuclides deposited in total body.
- Calibration Phantom: simulator of the human body, filled with a known radioactive source of radionuclides (e.g. ⁵⁷Co, ¹¹³Sn, ¹³⁷Cs, ⁶⁰Co, ⁸⁸Y,...) covering the range of energy of interest (e.g. 100-3000 keV)

BOMAB Phantom (ANSI 13.35)

Brick Phantom

Direct techniques using Body Counters: Lung Counting

- In vivo measurement of radionuclides with long residence times in the lung (e.g. U oxides, insoluble Pu and ²⁴¹Am).
- Detection of Xray, γ photons (E <200keV)
- HPGe detectors, Phoswich detectors

Lung Calibration:

- Livermore (LLNL, USA) phantom or JAERI (Japan) Phantom
- Lungs with radioactive sources
- Chest plates: ribs, muscle and fat
- Counting Efficiency mainly depending on Energy and chest wall thickness.

Thyroid Counting: determination of radioiodine in thyroid

- 1311: gamma emitter with a typical photopeak of 364.5 keV Calibration Source: ¹³¹I or ¹³³Ba (mainly same emissions as ¹³¹I)
- 125I: analysis of the X-ray typical emissions of 27.1 keV or/and using the low-energy gamma photopeak of 35.5 keV.
 Calibration Source: ¹²⁵I or ¹²⁹I (mainly same emissions as ¹²⁵I)

ANSI Thyroid Phantom, Bottle 20 ml with either ¹³¹I or ¹²⁵I (CIEMAT, Spain)

Livermore Thyroid Phantom,

IRSN (France)

INDIRECT TECHNIQUES:

In vitro Monitoring of Excreta Samples (Urine and faeces)

Urine samples:

- ✓ Daily urinary excretion is <u>1.6 Ld⁻¹ (reference man)</u> and <u>1.2 Ld⁻¹ (reference female)</u>
- ✓ Creatinine is excreted at an average rate of 1.7 g d⁻¹ (men) and 1.0 g d⁻¹ (women) These values may be used for normalization (24h excretion)

Fecal samples: Reference faeces weight for male is 150 g and 120 g for female

Alpha Spectrometry

- ✓ ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ²⁴⁴Cm, ²³⁴U, ²³⁵U, ²³⁸U, ²²⁸Th, ²³⁰Th, ²³²Th,...
- $\checkmark\,$ Radiochemical separation is required
- ✓ Tc = 300000 s
- ✓ Results in 2-3 weeks

Liquid Scintilation Counting (LSC) - Beta emitters:

- ✓ ³H (HTO, OBT),
- ✓ ¹⁴C, ³⁵S, ³²P,
- ✓ ⁹⁰Sr (radiochemical separation)
- ✓ Tc = 60 120 min
- ✓ Results in 1 day (⁹⁰Sr in ~5 days)

15

INDIRECT TECHNIQUES: In vitro Monitoring of Excreta Samples (Urine And Faeces)

Mass Spectrometry ICP-MS (Inductively Coupled Plasma Mass Spectrometry)

- ✓ Uranium, ²³²Th, ²³⁹Pu,...
- ✓ Rapid alternative vs. Alpha Spec.
- ✓ Easy sample treatment, diluted Urine samples
- ✓ Results in 1-2 days

Mass Spectrometry TIMS (Thermal Ionisation Mass Spectrometry)

 $\checkmark\,$ uranium and plutonium isotopic measurements

Kinethic Phosphorescence Analyser (KPA) and Fluorimetry

- $\checkmark\,$ Methods for total uranium in urine.
- ✓ Rapid alternative vs Alfa Spectrometry but higher Detection Limits

Gamma Spectrometry

- $\checkmark\,$ Gamma emitters. Rapid method. No sample treatment. Results in 1 day
- ✓ HP Ge detectors

Comparison of methods for individual monitoring of intakes of radionucloides

Methods	Advantages	Limitations
In vivo monitoring of radionuclides in an organ or in total body	Rapid measurement of the activity retained and deposited in the body, especially important in case of RN emergencies Rapid intake and dose assessments	Mainly $X_{ray} + \gamma$ emitter radionuclides Physical phantoms simulating internal contamination of organs or total body not always available Worse detection limit for actinide and NORM exposures when comparing with in vitro bioassay
In vitro radiobioassay of excreta samples	In vitro bioassay is the measurement technique of choice to quantify internal contamination of pure alpha and beta emitters. Alpha Spec. and ICP-MS: excellent detection limits	Alpha spectrometry: long time (~2 weeks) for estimating activity concentration in excreta samples. ICP-MS: better for NatU and Th in urine samples (and for other long lived radionuclides e.g. ²³⁹ Pu) but expensive technique
Workplace monitoring, Air Sampling	PAS and SAS may be useful when available <i>in vivo</i> and <i>invitro</i> techniques only quantify exposures reliably above 6 mSv, e.g. for monitoring actinides	High uncertainties may be associated when calculating intake, then difficult to use for dose assessment

Interpretation of Monitoring Data for the assessment of Intake I(Bq) and dose E(50)

D1.- Intake and Dose Assessments from a single monitoring data

- Date/Time of Intake T₀ (dd/mm/yyyy)
- Date/Time of Monitoring: t (days) after Intake
- In vivo monitoring data: M(Bq) Activity (from WBC)
 In vitro monitoring data: M(Bqd⁻¹) Activity concentration in excreta samples
- **Assessment of Intake I (Bq)** from a <u>single monitoring data</u> M(Bq):

$$I = \frac{M}{m(t)}$$

M(Bq)= monitoring data (WBC or excreta)

m(t) = fraction of retained/excreted activity when Intake is 1 Bq (provided by ICRP reports)

Assessment of the Committed Effective Dose E(50) mSv:

E(50) mSv = I(Bq) * e(50)(mSv/Bq)

e(50) mSv/Bq: dose coefficient (provided by ICRP) = committed effective dose PER UNIT INTAKE

EURADOS

m(t): Retention and Excretion Functions (urine and feces)

ICRP provides m(t): retention/excretion functions.

Fraction in the body (direct measurement) or being excreted from the body (indirect measurement) PER UNIT INTAKE

ICRP: m(t) I-131 inhalation, type F, AMAD = 5 μ m

m(t) depends on:

- Physical half-life
- Biokinetics of the radionuclide
- Is a function of the time since intake

New ICRP/OIR reports: **z(t)** dose coefficient per measurement content

$$z(t) = \frac{e(50)}{m(t)} SvBq^{-1}$$

Values of **dose per unit content** functions **Z**(*t*) are provided by ICRP in its Occupational Intakes of Radionuclides (OIR) report series

E(50) Sv = $M(Bq) \times Z(t)$ Sv Bq^{-1}

Dose per content function z(t) for ⁶⁰Co from ICRP DATA VIEWER Last update: Electronic Annex OIR P4 (ICRP 141) www.icrp.org

- ISO 27048: Dose Assessment for the monitoring of workers for internal radiation exposure
- IDEAS Guidelines: General Guidelines for the Estimation of Committed Effective Dose from Incorporation monitoring data

'Measurements are assumed to be lognormally distributed with a given scattering factor (SF)"

$$SF_i = \exp\sqrt{\left[\ln\left(SF_A\right)\right]^2 + \left[\ln\left(SF_B\right)\right]^2}$$

ISO 27048 (Annex B, Table B.1.) Sources of Uncertainties – In-vivo SCATTERING FACTOR (Log-normal)

Result of WBC: A $\pm 2\sigma_A$ Bq Calculation of SF_A from $\sigma_A \rightarrow$ SF_A = exp(σ_A/A)

	Log-normal scattering factor K _{SF}		
Source of uncertainty (Type)	Low photon energy E < 20 keV	Intermediate photon energy 20 keV < E < 100 keV	High photon energy E > 100 keV
Counting statistics (A)	1,5	1,3	1,07
Variation of detector positioning (B)	1,2	1,05	< 1,05
Variation of background signal (B)	1,5	1,1	< 1,05
Variation in body dimensions (B)	1,5	1,12	1,07
Variation of overlaying structures (B)	1,3	1,15	1,12
Variation of activity distribution (B)	1,3	1,05	< 1,05
Calibration (B)	1,05	1,05	1,05
Spectrum evaluation ¹⁾ (B)	1,15	1,05	1,03

ISO 27048 (Annex B, Table B.2.)

Uncertainties – In-vivo monitoring, different ranges of energy

	Scattering Factor (Log-normal)		
	Low Energy Photons E < 20 keV	IntermediateEnergy Photons 20 keV < E < 100 keV	High Energy Photons E > 100 keV
Total Type A	1.5	1.3	1.07
Total Type B	2.06	1.25	1.15
Total	2.3	1.4	1.2

ISO 27048 (Annex B, Table B.3.) Type B Uncertainties – In vitro monitoring – Default values for SF_B

Quantity	Type B Scattering factor SF_B
True 24 h urine	1.1
Activity concentration ³ H in urine	1.1
Simulated 24 h urine, creatinine or specific gravity normalised	1.7
Spot urine sample	2.0
Faecal 24 h sample	3.0
Faecal 72 h sample	1.9

D2. Internal Dose Assessments from a <u>set of n monitoring data M_i , i = 1...n</u>

- Date/Time of Intake T_0 (dd/mm/yyyy)
- Date/Time of n Monitoring data: ti (days) post intake; i = 1, ..., n
- Result of In-vivo monitoring: Mi (Bq) Activity (from WBC) or In-vitro monitoring: Mi (Bqd⁻¹) Activity concentration in excreta
- Assessment of the Intake I (Bq) from a set of n monitoring data

MAXIMUM LIKELIHOOD METHOD

- Assessment of the Committed Effective Dose E(50) mSv:

E(50) mSv = I(Bq) * e(50)(mSv/Bq)

Reference Documents on Internal Dosimetry

> ISO Reference documents - ISO TC85/SC2/WG13

- **ISO20553**: Monitoring of workers exposed to a risk of internal contamination
- ISO28218: Performance Criteria for Radiobioassay
- ISO27048: Dose Assessment for the monitoring of workers for internal radiation exposure
- ISO 16637: Monitoring and internal dosimetry for staff exposed to medical radionuclides as unsealed sources
- ISO 16638-1: Monitoring and internal dosimetry for specific materials Part 1: Inhalation of uranium compounds.
- ISO 16638-2: Monitoring and internal dosimetry for specific materials Part 2: Ingestion of uranium compounds.
- ISO 20031: Monitoring and dosimetry for internal exposures due to wound contamination with radionuclides

Reference Documents on Internal Dosimetry

Reference Documents on Internal Dosimetry

> EURADOS Reference documents:

 EC RP 188 - Technical Recommendations for Monitoring Individuals for Occupational Intakes of Radionuclides (ec.europa.eu/energy/sites/ener/files/rp_188.pdf) European Commission's Radiation Protection Report Series

 IDEAS Guidelines: General Guidelines for the Estimation of Committed Effective Dose from Incorporation monitoring data. Eurados Report 01-2013 (www.eurados.org).

EURADOS

EC RP 188 - Technical Recommendations for Monitoring Individuals for Occupational Intakes of Radionuclides

- A. Purpose, Context and Scope, and Implementation by Internal Dosimetry Services (5 recommendations)
- B. General Principles of Monitoring Individuals for Occupational Intakes of Radionuclides
- C. Monitoring Programmes (19 recommendations)
- D. Methods of Individual and Workplace Monitoring (39 recommendations)
- E. Routine and Special Dose Assessment (29 recommendations)
- F. Accuracy Requirements and Uncertainty Analysis (8 recommendations)
- G. Quality Assurance and Criteria for Approval & Accreditation (14 recommendations)
- H. Radon Measurement and Dosimetry for Workers (15 recommendations)

ANNEXES

- Reference Biokinetic and Dosimetric Models
- Examples of Monitoring Programme Design and Internal Dose Assessment
- ✓ Monitoring and Internal Dosimetry for First Responders in a Major Accident
- Internal Dosimetry for Assessment of Risk to Health
- \checkmark Compilation of the Recommendations

EC RP 188 - Technical Recommendations for Monitoring Individuals for Occupational Intakes of Radionuclides

Each relevent topic: a question, a technical explanation and list of recommendations

• Chapter D, Methods of Individual and Workplace Monitoring:

	low should <i>in vivo</i> bioassay of the activity of radionuclides ed in the body that emit penetrating radiation be performed?	
D02 I	<i>In vivo</i> measurement of radionuclides in the body should be employed for radionuclides emitting penetrating radiation that can be detected outside of the body (mainly high energy X-ray and gamma emitting radionuclides) wherever feasible [ICRU 2003; IAEA 1996]. Methods should satisfy the performance criteria for radiobioassay set by ISO 28218:2010 [ISO 2010b].	
D03 I	For radionuclides that are X/gamma emitters (>100 keV) and are rapidly absorbed from the respiratory tract into the body (e.g. ¹³⁷ Cs, ⁶⁰ Co), whole body monitoring using NaI(TI) scintillation detectors and/or HPGe semiconductor detectors should be performed [ICRU 2003; IAEA 1996]	
D04 I	Monitoring of specific organs using NaI(TI) scintillation detectors and/or HPGe semiconductor detectors should be performed for X/gamma emitting radionuclides that concentrate in particular organs or tissues (e.g. ¹³¹ I in the thyroid) [ICRU 2003; IAEA 1996]	

Types of Recommendations M – Mandatory (e.g. EURATOM Directive) I – International (e.g. ICRP, ISO)

A – Advisory (e.g. TECHREC team) **CHRAD**

EURADOS

EURADOS e. V. a sustainable network (<u>www.eurados.org</u>) European Radiation Dosimetry Group

EURADOS

EURADOS was founded in 1981 by scientists involved in contracts with the European Commission.

Main EURADOS bodies:

- ✓ The <u>General Assembly</u>, composed by 80 Voting Members (Feb 2020)
- ✓ The Executive Board
- ✓ The Council
- The <u>Working Groups</u>, with the involvement of > **500 scientists** in different fields of the dosimetry of ionizing radiations
- ✓ 40 Sponsor institutions

Home | Subscribe to our newsletter | Contact | Sitemap | Members login

European Radiation Dosimetru Group

Examples from Accredited

Enter a search term

EURADOS e. V. a sustainable network

(www.eurados.org)

EURADOS Working Groups	EURADOS actions - Annual Meetings		
WG2 Harmonisation of individual monitoring			
WG3 Environmental dosimetry	- Winter Schools		
WG6 Computational dosimetry	- Workshops		
WG7 Internal dosimetry			
WG9 Radiation dosimetry in radiotherapy	ICIDOSE (E(50))		
WG10 Retrospective dosimetry	 Training Courses Young scientist support 		
WG10 Retrospective dosinietry WG11 High energy radiation fields - Young scientist support - Newsletter			
WG12 Dosimetry in medical imaging	- EURADOS Curpeon Rodicion Dodimetry Croup e. V. EURADOS Report 2013-01 Braunschweig, March 2013		
	Reports & publications		
 Recent EC Projects: EIVIC, EJP CONC CONFIDENCE, Cathymara, Shamiseng, 	IDEAS Guidelines (Version 2)		
• Member of MEENA Network - Joint res	C.M. Castellani, J.W. Marsh, C. Hurtgen, E. Blanchardon, P. Berard, A. Giussani,		

 Member of MEENA Network – Joint reseach for radiological protection in Europe

EURADOS

M.A. Lopez

Thanks for your attention

Centro de Investigaciones Energéticas, Medicambientales y Tecnológicas

