IAEA-314-D42017-CR-.1 LIMITED DISTRIBUTION

WORKING MATERIAL

IMPROVEMENT OF COLONY MANAGEMENT IN INSECT MASS-REARING FOR SIT APPLICATIONS

FIRST RESEARCH COORDINATION MEETING

ORGANIZED BY THE JOINT FAO/IAEA DIVISION OF NUCLEAR TECHNIQUES IN FOOD AND AGRICULTURE

23rd -27th July 2018 Vienna, Austria

NOTE

The material in this document has been supplied by the authors and has not been edited by the IAEA. The views expressed remain the responsibility of the named authors and do not necessarily reflect those of the government of the designating Member State(s). In particular, neither the IAEAA nor any other organization or body sponsoring the meeting can be held responsible for any material reproduced in this document.

Table of Contents

1.	SUMMARY	3
2.	BACKGROUND SITUATION ANALYSIS	3
3.	REVISED LOGICAL FRAMEWORK	8
4.	INDIVIDUAL WORK PLANS FOR THE NEXT 18 MONTHS	.17
5.	AGENDA	.19
6.	LIST OF PARTICIPANTS	.24
7.	NEXT MEETING	.28
8.	WORKSHOP	.28
AN	NEX I: WORKING PAPERS	.29

1. SUMMARY

Sterile Insect Technique (SIT) applications against major insect pests and disease vectors rely on the cost-effective production of high quality sterile males. This largely depends on the optimal management of target pest colonies by maximizing the benefits provided by a genetically rich and pathogen-free mother colony, the presence of symbiotic microorganisms, and an efficient domestication and mass-rearing process, while at the same time minimizing or even eliminating the outbreak of microbial (bacteria, fungi, microsporidia) and viral pathogens, as well as the use of hazardous chemicals. The optimization of the colony management for different SIT target insects will ensure a standardized high quality mass-rearing process and the cost-effective production of sterile males with enhanced field performance and male mating competitiveness. The proposed CRP aims to develop best practices for insect colony management for the cost-effective production of high quality sterile males for SIT applications against major insect pests and disease vectors through a multidisciplinary approach involving entomologists, geneticists, ecologists, microbiologists, pathologists, virologists, and mass-rearing experts.

2. BACKGROUND SITUATION ANALYSIS

Wild and captive insect populations constantly evolve as a result of both random and adaptive processes. Adaptation is a non-random process by which individuals carrying certain genotypes have a fitness advantage over other individuals, such that the frequency of favored genotypes increases in the population over time. However, an individual's fitness is context-dependent, whereby genotypes conferring high fitness under certain environments may confer low fitness under different conditions.

Mass-rearing of insects for SIT poses a particular challenge in this regard, as the insects reared in the production facility face two strikingly different environments during their lifetime: the rearing environment (the facility) vs. conditions in field, where they will be released for the sole purpose of achieving matings with wild females in the presence of competing wild males. In addition, because the targeted reproductive fitness of released males is zero, adaptive processes only operate under the rearing environment. Therefore, unless mitigating efforts are implemented, the field performance of mass-reared sterile males is bound to deteriorate over time. In addition, other diversity-eroding processes may occur: i) a small founding population can restrict genetic diversity from the beginning; and ii) genetic drift resulting from the random loss of genetic variation that is most pronounced in small populations. Parallel phenomena can occur with microorganism communities associated with insects in the mother colony.

In addition to the functions encoded by their own genome, the fitness of multicellular organisms is greatly influenced by the communities of microorganisms that they harbour in or on their bodies. These associated microbial populations can have extensive effects on their hosts, including nutritional and protective benefits. In general, due to their short generation time, larger population sizes, and in some cases, environmental acquisition, microbial communities may confer hosts with a greater capacity to tolerate or resist biotic and abiotic challenges. Microbial community composition and function may itself evolve rapidly with host populations as a result of selective and random processes. An extreme example of this is the loss or replacement of particular microbial partners during domestication of wild insects. Thus, the symbionts that may have beneficial effects on their host in the wild, including traits affecting male mating performance, may be lost during the mass-rearing process. Furthermore, such a shift in the symbiotic community may expose the mass-rearing insect to increased sensitivity to pathogens.

The challenges to be met are therefore:

1. To prevent or minimize deterioration of the mother colony by maintaining genetic diversity.

- 2. To prevent or minimize the loss of field performance.
- 3. To identify and conserve the symbiotic potential that enables the insect to combat entomopathogens and succeed upon field release.

Effective colony management is essential for insect mass-rearing and the successful application of low sterile insect techniques. We propose to address four major problems encountered during insect colonization and insect mass-rearing:

1- Low genetic diversity, entomopathogen presence, and low performance are regularly encountered during insect colonization and adaptation to mass-rearing conditions.

2- Loss of genetic diversity and important symbiotic organisms often leads to a decline in mating competitiveness, predator avoidance, and longevity, as well as circadian rhythm alteration, resulting in colony deterioration, as observed under continuous mass-rearing.

3- Loss of strain stability or purity of specially designed or selected insect strains are major concerns during continuous mass-rearing, resulting in colony deterioration.

4- Colonies in insect mass-rearing facilities are frequently threatened by infection or build-up of microbial and viral entomopathogens, which is exacerbated by the lack of pathogen detection tools.

1. Low genetic diversity, presence of entomopathogens, and low performance are regularly encountered during insect colonization and adaptation to mass-rearing conditions.

The establishment of new colonies for mass-rearing typically involves collection of wild specimens to breed in captivity. The process of domestication necessarily results in individuals that differ from their wild counterparts. Such differences arise from the result of selection for traits that are beneficial to the mass-rearing process, or genetic drift stemming from small effective population sizes, which are generally lower than census sizes. The size of the founding population, along with other demographic parameters, will influence the degree to which genetic drift will erode genetic variation. Substantial loss of genetic diversity can compromise the ability of the colony and of the released insects to respond to environmental stressors, including evolving pathogens, in both rearing and field conditions. Similarly, small population sizes can lead to a reduction in fitness caused by the exposure of deleterious recessive alleles resulting from inbreeding (i.e., inbreeding depression). In addition, selection for traits favored by the domestication process (e.g. high fecundity and early reproduction) is often negatively correlated with traits associated with field performance (e.g. survival, mating competitiveness, predator avoidance). Changes in the microbial community can also result in reduced performance.

Because the size of a founding population is limited by economical and logistical factors, determination of the minimum founding size and traits required for successful establishment is desirable. Similarly, to monitor genetic and microbiota (including pathogens) changes, it is important to develop adequate methodologies and establish baseline measures.

2. Loss of genetic diversity and important symbiotic organisms often lead to decline in mating competitiveness, predator avoidance, and longevity under stress resulting in colony deterioration, as observed under continuous mass-rearing.

Empirical evidence shows that the insect mass-rearing process over generations normally results in adaptations of the target insect species to facility conditions that allow production of large numbers. Examples of these adaptations are female acceptance of oviposition devices, early reproduction, fast development, and high fecundity rates. For SIT application, this is highly desirable, since it makes the process more cost-effective.

However, it has been observed that there are trade-offs of these adaptations with field performance. One such trait is sexual competitiveness. Under mass-rearing conditions, female mate choice is affected by high densities and the operational sex ratio, resulting in less-selective females. This in turn results in selection for less elaborate male courtship behaviours and the concomitant loss of mating competitiveness.

Another common trait of mass-reared insects is the loss of their ability to avoid predation, which results in very high mortality under natural field conditions. Alteration of the circadian rhythm, caused by different environmental conditions or light: dark cycles, is another undesirable adaptation of mass-reared insects, because it reduces encounters of sterile males and wild females.

This deterioration of sterile insects resulting from continuous mass-rearing reduces the effectiveness of SIT and could jeopardize its successful application. Enhanced colony management practices could represent an alternative to overcome these undesirable effects of mass-rearing. There is evidence that classical genetic breeding methods, such as selection and hybridization, could be used to improve field performance of mass-reared insects for SIT.

Symbiotic organisms provide beneficial functions not encoded in the genome of the host organism, enabling it to live in its natural environment. Upon entering mass-rearing, the original community is partially or totally lost and replaced, with potential deleterious effects in terms of protection against pathogens and of field performance. The loss of symbiotic interactions can be mitigated by: i) reconstituting it by exogenously providing adequate microorganisms, or ii) maintaining symbionts by identifying the causes in the mass-rearing process that lead to its elimination. The causes of the loss may be nutritional (e.g. a diet providing all the needs of the insect; a diet in which the symbionts are outcompeted by other microbes or eliminated by antimicrobial compounds), environmental (e.g. temperature, larval density) or it may be due to accompanying genetic changes. An important outcome of colony management is data integration. Insect population genetics, production parameters, field performance, and symbiont functional and taxonomic partnerships, as they change during colony establishment and production, should be analyzed in a unified framework. The alteration of genetic structure in the host and symbionts could be linked to production, functional, and performance outcomes.

3. Loss of stability or purity of specially designed or selected strains are major concerns during continuous mass-rearing, resulting in colony deterioration.

SIT is more efficient when only males are released. Mechanisms to separate sexes during massproduction have been developed for several tephritids and are in preparation for other insects such as mosquitoes. They are based on the generation of chromosomal translocations whereby a portion of an autosome containing a marker gene (e.g. pupal colour) is translocated to the Y chromosome. Under this scheme, males are heterozygotes whereas females are recessive homozygotes for the marker. Strains carrying such translocations are susceptible to loss of the translocation due to rare recombination events. Accumulation of recombinant individuals, where the sexing mechanism has broken down, reduces the efficiency of production and release. Such phenomena can lead to the closure of production plants, which can have serious consequences on control activities over broad geographical areas, thus enabling the build-up of pest populations. A procedure has been designed to maintain strain stability in tephritids, by which recombinant individuals in the mother colony are removed (i.e., males and females with the incorrect pupal colour). It would be advantageous to transfer and optimize such filtering schemes to maintain stability and purity of colonies regarding these and other desirable characteristics (e.g. longevity, competitive ability, tolerance to stress, predator avoidance, etc.), which could enhance performance of released males. In addition, inversions can be integrated in the strains covering the region of the translocation breakpoint and the selectable marker, as the chromosomal inversions can suppress recombination events.

4. Colonies in insect mass-rearing facilities are frequently threatened by infection or build-up of microbial and viral entomopathogens, which is exacerbated by the lack of detection tools.

Insects in SIT mass-rearing facilities are reared at high densities under artificial environmental conditions, in terms of food supply, temperature, light and humidity. These production conditions together with a limited genetic diversity of the reared colony may enhance the outbreak of infectious diseases, hampering colony health and therefore threatening the economic production of highly performing insects. Disease may result in sub-lethal effects, such as reduced fecundity, fertility, longevity, or delayed development, or massive mortality and complete decline of a reared colony. Therefore, early detection, monitoring, and prevention measures are crucial to avoid the outbreak and establishment of infectious diseases in insect mass-rearing. Insects used for SIT mass-rearing facilities belong mainly to Diptera, Lepidoptera, and Coleoptera. They may be susceptible to microbial (bacteria, fungi, microsporidia) and viral entomopathogens. Many of these entomopathogens have been well known for decades, whereas others have been only recently discovered, such as the *Glossina pallidipes* salivary gland hypertrophy virus in tsetse fly SIT rearing facilities.

Bacteria associated with insects can be mutualists, commensals, parasites and/or entomopathogens. Entomopathogenic bacteria are found in different bacterial genera, including *Bacillus, Serratia, Pseudomonas, Micrococcus*, and many others. These pathogens may be highly specific or have a broad host range. They generally infect their hosts through oral routes.

Insect rearing may suffer from entomopathogenic fungi. Fungi generally have a broader host range than bacteria or viruses, and harm insects from different orders. In addition to insect-specific entomopathogenic fungi, saprophytes, such as *Aspergillus* or *Penicillium*, may grow on artificial diets and severely affect colony health. Microsporidia and other protists are unicellular eukaryotic organisms, which are phylogenetically related to fungi. Many microsporidia species are known as pathogens of vertebrates and invertebrates, including insects. They are intra- and intercellular parasites, which are horizontally transmitted by spores or vertically transmitted via eggs. Microsporidia infections in insects often culminate in chronic infections, reducing the fitness, fecundity, and other production parameters of produced insects. They may also entail an increased susceptibility to other pathogens.

Insect viruses are thought to be predominantly transmitted via an oral route, though there are examples of vertical transmission. Virus infection may cause a sudden colony decline or a chronic infection affecting colony fitness. Infections caused by DNA or RNA viruses have been reported as a severe threat for SIT mass-rearing colonies: e.g. baculoviruses in codling moth, hytrosaviruses in tsetse flies, densovirus in mosquitoes, and iflaviruses in medfly. Some of these viruses may remain undetected for a long time in covert (latent or persistent) infections in insect colonies and can become activated (resulting in an overt infection) by unknown endogenous factors. Also, exogenous conditions, such as suboptimal rearing parameters or overcrowding, favour outbreak of covert viruses.

Outbreaks of bacterial and fungal diseases can be controlled by implementing hygiene standards, applying sanitary measures, and by adding antimicrobial compounds to the diet. Fungistatic and bacteriostatic measures based on detergents and toxicants can be used, although they may put insect and human health at risk. Therefore, these measures have to be adapted to each insect species used in the SIT. Development of resistance against antimicrobial compounds needs to be prevented at the same time.

In many cases, viral pathogens cannot be eliminated using hygiene standards or non-harmful chemicals. So far, topical treatment with formalin is used to decontaminate egg surfaces, or to be

incorporated in insect diet, to reduce virus infection is used in many SIT rearing facilities. Due to the toxic effects of formalin, the use of other antiviral drugs to reduce and/or eliminate the virus load is desirable. Very few antiviral drugs are available, and new antiviral drugs against viral pathogens found in insect mass-rearing for SIT are needed. As an alternative, the recent selection of codling moth strains highly resistant to *Cydia pomonella* granulovirus (CpGV) in the field may provide new opportunities to secure colony health in regard to baculovirus infection. These resistance mechanisms may serve as a molecular model for other lepidopterans that are targets of the SIT. Breeding of insect colonies with an inherited resistance to pathogens may be highly desirable, but this strategy needs to be assessed, because resistance to pathogens may also result in loss of future pathogen-based control opportunities, if these resistant insects become accidentally established in the environment.

Efficient and specific entomopathogen diagnosis is essential for both establishment and maintenance of an insect colony. Entomopathogen diagnosis is based on host symptoms and culture-dependent approaches, light and electron microscopy, as well as molecular tools based on ELISA or PCR. In many cases, these techniques need to be developed for specific host-pathogen systems. Rapid and cost-effective diagnostic tools based on novel molecular techniques, such as microarrays and next generation sequencing, are desirable for future applications.

It is well understood that insect pathogen control strategies based on chemicals (antimicrobial or antiviral materials, etc.) can increase pressure on the pathogens to evolve resistance, if not wisely applied. Therefore, in an ongoing mass-rearing situation, it is desirable to employ pathogen control strategies that mitigate resistance development. Non-chemical disinfection, a wide array of chemical treatments, or rotating control strategies all appear to be desirable options to develop as a method to improve sustainability in terms of insect pathogen control.

3. REVISED LOGICAL FRAMEWORK

Project Design Elements	Verifiable	Means of	Important Assumptions
	Indicators	Verification	
Overall Objective: The objective of this CRP is to develop the best practices for insect colony management for improved SIT applications against major insect pests by exploiting existing as well as novel knowledge and tools to address problems associated with mother colony deterioration and strain breakdown, symbionts and pathogens,	n.a.	n.a.	The sterile insect technique will continue to be of relevance for the environmentally-friendly and sustainable management of insect pests and disease vectors FAO and IAEA Member States will continue requesting support in relation to the application of sterile insect technique against major pests of agricultural, livestock and human health importance
Specific Objectives: 1. To develop methods to manage insect colonization issues to overcome problems such as loss of genetic diversity, insect pathogen presence and low performance	1. Revised protocols in participating SIT programmes resulting in more effective management of colonization	1. Records of rearing facilities implementing new or improved colonization protocols	1a-There are genetic, microbial, performance and logistic problems during colonization processes that need to be addressed 1b-Mitigation measures can be developed to address the identified issues related to the colonization processes
2. To develop methods to prevent or minimize colony deterioration in terms of loss of genetic diversity, important symbiotic organisms, mating competitiveness, predator avoidance, longevity and change in circadian rhythm.	Revised mass- rearing protocols in participating SIT programmes resulting in minimal colony deterioration	2. Records of rearing facilities implementing new or improved mass rearing protocols	2a-There are colony deterioration processes during continuous insect mass-rearing that need to be prevented or minimized 2b-Mitigation measures can be developed to address the identified issues related to the colony deterioration
3. To develop methods to avoid or minimize the loss of insect strain stability or purity of specially designed or selected strains	Revised protocols resulting in stable and pure strains at participating SIT programmes	3. Records of rearing facilities implementing new or improved mother colony maintenance protocols	3a-Strain breakdown is a common phenomenon that needs to be addressed 3b-Mitigation measures can be developed to maintain strain stability

4. To develop methods to avoid or minimize the infection or build-up of microbial and viral pathogens in mass rearing facilities and the emergence of resistance against anti-microbial compounds and to develop pathogen detection tools	Revised protocols that result in effective disease control in mass- reared colonies at participating SIT programmes	4. Records of rearing facilities implementing new or improved disease control protocols	4a-Insect mass rearing systems are at high risk of infectious diseases 4b-Continuous use of anti-microbial compounds may select for resistance 4c-Mitigation measures can be developed to prevent the introduction and/or build-up of microbial or viral infection
Outcomes: 1.1. Methods to measure genetic	Recommendations	1.1 Scientific reports	1.1. Starting colonies of
diversity in a new insect colony and recommendations concerning founding colony for target SIT species	concerning founding colony for SIT mass rearing resulting in colonies of adequate genetic diversity	and guidelines	adequate sizes will minimize the loss of genetic diversity
1.2. Lists of entomopathogens that may impact new colonies of target SIT species	1.2. Recommendations on pathogens that should be avoided resulting in pathogen-free colonies	1.2. Scientific reports and guidelines	1.2. Highly detrimental insect pathogens can be identified in the process of colonization
1.3. Minimum performance levels established in terms of mass rearing productivity and field performance (sexual compatibility and competitiveness, survival)	1.3. Guidelines on key parameters related to mass rearing productivity and field performance	1.3. Scientific reports and guidelines	1.3. Minimum performance levels can be preserved during the colonization process
2.1. Methods to monitor changes in genetic diversity in an insect colony	2.1. Guidelines for monitoring genetic diversity	2.1. Scientific reports and guidelines	2.1. Genetic changes during insect mass rearing can be adequately estimated
2.2. Methods to measure and remediate the loss of important symbiotic organisms or their functions	2.2. Guidelines to maintain colonies with important symbiotic organisms	2.2. Scientific reports and guidelines	2.2. Important symbiotic organisms can be maintained or reintroduced into mass- reared colonies
2.3. Methods to measure or mitigate the loss of mating competitiveness, predator avoidance, longevity, or circadian rhythm in target SIT species	2.3. Recommendations for maintaining colonies with adequate field performance	2.3. Scientific reports and guidelines	2.3. Mitigation measures can be developed to address the identified issues related to the colony deterioration
3. Methods to measure and	3. Recommendations	3. Scientific reports	3. Strain breakdown is a

maintain stability and purity of specially designed or selected insect strains	for maintaining pure and stable colonies	and guidelines	common phenomenon that can be addressed through mitigation measures
4.1. Availability of diagnostic tools to monitor the prevalence of entomopathogens in insect colonies.	4.1. Guidelines for applying diagnostic tools for pathogen detection	4.1. Scientific reports and guidelines	4.1. Insect pathogens can be detected and quantified by diagnostic tools
4.2. Sanitary measures to avoid the outbreak and spread of insect diseases	4.2. Guidelines for maintaining colonies free of pathogens and diseases	4.2. Scientific reports and guidelines	4.2. Colony health can be improved by sanitary measures
4.3. Disease resistant insect strains for SIT mass rearing	4.3. Recommendation for establishing disease- resistant strains	4.3. Scientific reports and guidelines	4.3. Pathogen-resistant insect strains can be a highly valuable asset to suppress disease outbreaks
4.4. Alternative entomopathogen management strategies	4.4. Recommendations on alternative pathogen management strategies in insect mass rearing	4.4. Scientific reports and guidelines	4.4. Integration of alternative entomopathogen control methods improves colony health
Outputs			
1.1.1. Genetic markers developed for target SIT species	1.1.1. Genetic markers developed for at least four SIT target species	1.1.1. Scientific reports and peer reviewed publications	1.1.1. Adequate genetic markers can identified and optimized
1.1.2. Methods compared to measure genetic diversity in a new insect colony	1.1.2.Three methods compared in at least two SIT target species	1.1.2. Scientific reports and peer reviewed publications	1.1.2. Different approaches to measure genetic diversity are available
1.1.3. Models developed to optimize minimum founding colony size for target SIT species	1.1.3. Model on founding colony size developed using population viability analysis for different SIT target species	1.1.3. Scientific reports and/or peer reviewed publications	1.1.3. Minimum founding colony size can be estimated through modeling
1.2.1. Diagnostic tools for known entomopathogens developed	1.2.1. Diagnostic tools developed for major entomopathogens of at least four target insect species	1.2.1. Scientific reports and peer reviewed publications	1.2.1. Highly detrimental insect pathogens can be identified in the process of colonization
1.2.2. Lists of entomopathogens that might impact new colonies of target SIT species developed	1.2.2. List of entomopathogens developed for at least four SIT target species	1.2.2. Scientific reports and/or peer reviewed publications	1.2.2. Highly detrimental insect pathogens can be identified in the process of colonization
1.3.1. Minimum performance levels established in terms of	1.3.1. Minimum performance levels	1.3.1. Scientific reports and/or updated	1.3.1. Minimum performance levels can

mass rearing productivity	established under mass rearing for at least four SIT target species	manuals and guidelines	be preserved during the colonization process				
1.3.2. Minimum performance levels established in terms of field performance (sexual compatibility and competitiveness, survival)	1.3.2. Minimum field performance levels established for at least four SIT target species	1.3.2. Scientific reports and/or updated manuals and guidelines	1.3.2. Minimum performance levels can be preserved during the colonization process				
2.1. Genetic changes in insect colonies under mass rearing monitored	2.1. Genetic changes during continuous mass rearing monitored in at least four SIT target species	2.1. Scientific reports and peer reviewed publications	2.1. Genetic changes during insect mass rearing can be adequately monitored				
2.2.1. Diagnostic tools applied or developed for important symbiotic organisms	2.2.1. Diagnostic tools for important symbiotic organisms applied in at least four SIT target species	2.2.1. Scientific reports and peer reviewed publications	2.2.1. There are important symbiotic organisms that can be identified and characterized				
2.2.2. Methods developed to assess loss of important symbiotic organisms or their functions during continuous mass rearing	2.2.2. Changes in symbiotic organisms monitored during continuous mass rearing in at least four SIT target species in at least three species	2.2.2. Scientific reports and peer reviewed publications	2.2.2. There are important symbiotic organisms that can be maintained in mass- reared colonies				
2.3. Remediation methods to address the loss of essential symbiotic organisms or their functions assessed	2.3. Approaches to promote beneficial microbiota assessed in at least two SIT target species	2.3. Scientific reports and peer reviewed publications	2.3. There are important symbiotic organisms that upon loss can be reintroduced into mass- reared colonies				
2.4. Methods to mitigate the loss of mating competitiveness, predator avoidance, longevity or circadian rhythm in target SIT species developed	2.4. Mother colony management methods assessed under low stress conditions to mitigate the loss of mating competitiveness, predator avoidance, longevity or circadian rhythm in at least two target SIT species	2.4. Scientific reports and peer reviewed publications	2.4. Mitigation measures can be developed to address the identified issues related to the colony deterioration				
2.5. Cryopreservation to preserve insect colonies	2.5. Protocol developed/assessed to cryopreserve insect colonies in at least two SIT target	2.5. Scientific reports and/or updated manuals and guidelines	2.5. A protocol for cryopreservation of insects can be established for target SIT species				

	species		
2.6. Cryopreservation to preserve the insect microbiome	2.6. Cryopreservation of the insect microbiome explored in at least two SIT target species	2.6. Scientific reports and/or updated manuals and guidelines	2.6. A protocol for cryopreservation of insect microbiome can be developed for target SIT species
3.1. Methods assessed to measure and maintain the stability of specially designed or selected insect strains	3.1. Stability of specially designed or selected strains assessed in at least two SIT target species.	3.1. Scientific reports and peer reviewed publications	3.1. Protocols to maintain the stability of specially designed or selected strains can be established
3.2. Best practices developed to avoid colony contamination to maintain colony purity	3.2. Best practices to avoid colony contamination to maintain colony purity developed in at least one SIT target species.	3.2. Scientific reports and peer reviewed publications	3.2. Colony contamination remains an important problem in insect mass rearing Best practices can be achieved to maintain colony purity
4.1. Diagnostic tools developed to monitor the prevalence of entomopathogens in insect colony	4.1. Diagnostic tools for routine monitoring of key entomopathogens developed for at least two SIT target species	4.1. Scientific reports and peer reviewed publications	4.1. Insect mass rearing systems are at high risk of infectious diseases Important pathogens for insect mass rearing can be diagnosed
4.2.1. Endogenous and exogenous factors contributing to the outbreak of latent infection identified	4.2.1. Factors causing outbreak of latent infection identified for at least two SIT target species	4.2.1. Scientific reports and peer reviewed publications	4.2.1. Latent pathogen infections are present in insect mass rearing colonies, and become activated by endogenous and exogenous factors
4.2.2. Sanitary protocols defined and assessed to avoid the spread of insect diseases	4.2.2. Sanitary protocols to suppress the spread of key pathogens defined and assessed for at least two SIT target species	4.2.2. Scientific reports and/or updated manuals and guidelines	4.2.2. Mitigation measures can be developed to prevent the introduction and/or build- up of microbial or viral infection
4.3. Disease-resistant insect strains developed and assessed for SIT mass rearing	4.3. Insect strain resistant to specific pathogens developed and assessed under mass rearing condition for at least one SIT target species	4.3. Scientific reports and peer reviewed publications	4.3. Pathogen-resistant insect strains can be effectively used to minimize disease outbreaks
4.4.1. Symbiont-mediated defence strategy developed	4.4.1. Symbiont- mediated defence strategy developed	4.4.1. Scientific reports and peer reviewed publications.	4.4.1. Symbiont-mediated protection may be useful for mitigating disease

	for at least one SIT		outbreaks in mass rearing
	target species		outoreaks in mass rearing
4.4.2. Entomopathogen	4.4.2.	4.4.2. Scientific	4.4.1. An integrated
management strategies developed	Entomopathogen	reports and peer	approach for pathogen
that minimize the use of drugs	management	reviewed publications	management can be
and chemicals	strategies developed	reviewed publications	developed to sustain
and chemicals	for at least one SIT		-
			healthy colonies
ACTIVITIES:	target species		
A. Administrative activities			
1. Hold Consultants Meeting and	Consultant meeting	Report of consultant	Consultant meeting
prepare CRP proposal	held May 2017	meeting and CRP	approved
prepare CICI proposal	field Widy 2017	proposal	approved
2. CRP proposal submitted to	CRP proposal	Minutes of IAEA	CRP proposal approved
IAEA committee	submitted	Committee	by IAEA committee
3. Announce project amongst	CRP announced, and	Issue contracts and	Sufficient Research
established geneticists,	research contract		
U ,		agreements	proposals submitted for the proposed CRP
entomologists, microbiologist,	and agreement		
and mass rearing managers to establish CRP	proposal submitted, evaluated and		Contracts and agreements
CSIAUIISII UNT	forwarded to IAEA		approved by IAEA committee
			committee
4 Owner the first DCM to all a	committee	Einst DCM man aut	DCM is far to 1 and
4. Organize first RCM to plan,	First RCM held in	First RCM report	RCM is funded and
coordinate and review proposed	mid-2018		approved
research activities (2 nd quarter			
2018)	D 1 1 1	D 1	D
5. Carry out R&D as agreed in	Research carried out	Research reports	Reports approved and
the first RCM as indicated in	by contract and		subsequent funding of
R&D activities section	agreement holders		contracts
6. Second RCM to analyse data	Second RCM held in	Second RCM report	RCM is funded and
and develop research plans for	first half of 2020		approved
the next phase of the CRP (early			
2020)			
7. In conjunction with second	Workshop held in	Workshop report	Workshop approved
RCM, hold workshop on	conjunction with		
"Genetic Diversity Analysis and	2nd RCM		
Colony Management"			
8. Continue R&D as agreed in the	Research carried out	Research reports	Reports approved and
second RCM as indicated in	by contract and		subsequent funding of
R&D activities section	agreement holders		contracts
9. Review the CRP during its	Mid-CRP report	Mid-CRP report	IAEA committee
third year	prepared and		approves funding for
	submitted to IAEA		second half of CRP
	committee		
10. Convene third RCM to	Third RCM held in	Third RCM report	RCM is funded and
evaluate results and plan final	second half of 2021		approved
research of the CRP (second			
semester of 2021)			
11. In conjunction with third	Workshop held in	Workshop report	Workshop approved
RCM, hold workshop on	conjunction with 3rd		
"Diagnostic tools for pathogen	RCM		
detection and characterization"			
	1	l	1

12. Continue R&D as agreed in	Research carried out	Research reports	Reports approved
the third RCM as indicated in	by contract and		
R&D activities section	agreement holders		
13. Hold final RCM to review	Fourth RCM held in	Fourth RCM report	RCM is funded and
data and reach consensus (early 2023)	first half of 2023		approved
14. Evaluate the CRP and submit	Final CRP	CRP Evaluation	IAEA committee
evaluation report	evaluation carried	Report	approves final CRP
	out and submitted to		evaluation report
	IAEA committee	~ · · · ·	
15. Prepare articles for joint final	CRP participants	Special Issue in	Special Issue funded
publication of CRP results in a	prepare and submit	scientific journal	Manuscripts submitted
Special Issue of an open source	papers on their		survive the peer-review
and peer-reviewed scientific journal	research		process
B. R&D activities			
1.1.1. Develop genetic markers	Genetic markers	1.1.1. Scientific	1.1.1. Adequate genetic
for target SIT species	developed for at	reports and peer	markers can identified
	least four SIT target	reviewed publications	and optimized
	species		
1.1.2. Compare methods to	1.1.2. Three methods	1.1.2. Scientific	1.1.2. Different
measure genetic diversity in a	compared in at least	reports and peer	approaches to measure
new insect colony	two SIT target	reviewed publications	genetic diversity are
	species		available
1.1.3. Develop models to	1.1.3. Model on	1.1.3. Scientific	1.1.3. Minimum founding
optimize minimum founding	founding colony size	reports and/or peer	colony size can be
colony size for target SIT species	developed using population viability	reviewed publications	estimated through modeling
	analysis for different		modering
	SIT target species		
1.2.1. Develop diagnostic tools	1.2.1. Diagnostic	1.2.1. Scientific	1.2.1. Highly detrimental
for known entomopathogens	tools developed for	reports and peer	insect pathogens can be
1 C	major	reviewed publications	identified in the process
	entomopathogens of	1	of colonization
	at least four SIT		
	target species		
1.2.2. Develop lists of	1.2.2. List of	1.2.2. Scientific	1.2.2. Highly detrimental
entomopathogens that might	entomopathogens	reports and/or peer	insect pathogens can be
impact new colonies of target SIT	developed for at	reviewed publications	identified in the process
species	least four SIT target		of colonization
1.3.1. Establish minimum	species 1.3.1. Minimum	1.3.1. Scientific	1.3.1. Minimum
performance levels in terms of	performance levels	reports and/or updated	performance levels can
mass rearing productivity	established under	manuals and	be preserved during the
mass rearing productivity	mass rearing for at	guidelines	colonization process
	least four SIT target	Saracinics	Colomzation process
	species		
1.3.2. Establish minimum	1.3.2. Minimum	1.3.2. Scientific	1.3.2. Minimum
performance levels in terms of	field performance	reports and/or updated	performance levels can
field performance (sexual	levels established for	manuals and	be preserved during the
compatibility and	at least four SIT	guidelines	colonization process
competitiveness, survival)	target species		

2.1. Monitor genetic changes in insect colonies under mass rearing	2.1. Genetic changes during continuous mass rearing monitored in at least four SIT target species	2.1. Scientific reports and peer reviewed publications	2.1. Genetic changes during insect mass rearing can be adequately monitored
2.2.1. Develop and apply diagnostic tools for important symbiotic organisms	2.2.1. Diagnostic tools for important symbiotic organisms applied in at least four SIT target species	2.2.1. Scientific reports and peer reviewed publications	2.2.1. There are important symbiotic organisms that can be identified and characterized
2.2.2. Develop methods to assess loss of important symbiotic organisms and their functions during continuous mass rearing	2.2.2. Changes in symbiotic organisms monitored during continuous mass rearing in at least four SIT target species	2.2.2. Scientific reports and peer reviewed publications	2.2.2. There are important symbiotic organisms that can be maintained in mass- reared colonies
2.3. Assess remediation methods to address the loss of essential symbiotic organisms or their functions	2.3. Approaches to promote beneficial microbiota assessed in at least two SIT target species	2.3. Scientific reports and peer reviewed publications	2.3. There are important symbiotic organisms that upon loss can be reintroduced into mass- reared colonies
2.4. Develop methods to mitigate the loss of mating competitiveness, predator avoidance, longevity or circadian rhythm in target SIT species	2.4. Mother colony management methods assessed under low stress conditions to mitigate the loss of mating competitiveness, predator avoidance, longevity or circadian rhythm in at least two target SIT species	2.4. Scientific reports and peer reviewed publications	2.4. Mitigation measures can be developed to address the identified issues related to the colony deterioration
2.5. Optimize cryopreservation methods to preserve insect colonies	2.5. Protocol developed/assessed to cryopreserve insect colonies in at least two SIT target species	2.5. Scientific reports and/or updated manuals and guidelines	2.5. A protocol for cryopreservation of insects can be established for target SIT species
2.6. Optimize cryopreservation methods to preserve the insect microbiome	2.6. Cryopreservation of the insect microbiome explored in at least two SIT target species	2.6. Scientific reports and/or updated manuals and guidelines	2.6. A protocol for cryopreservation of insect microbiome can be developed for target SIT species
3.1. Assess methods to measure and maintain the stability of	3.1. Stability of specially designed or	3.1. Scientific reports and peer reviewed	3.1. Protocols to maintain the stability of specially

· 11 1 · 1 1 . 1	1 . 1 . 1	1.1.						
specially designed or selected insect strains	selected strains assessed in at least two SIT target species.	publications	designed or selected strains can be established					
3.2. Develop best practices to	3.2. Best practices to	3.2. Scientific reports	3.2. Colony					
avoid colony contamination to maintain colony purity	avoid colony contamination to maintain colony purity developed in at least one SIT target species.	and peer reviewed publications	contamination remains an important problem in insect mass rearing Best practices can be achieved to maintain colony purity					
4.1. Develop diagnostic tools to	4.1. Diagnostic tools	4.1. Scientific reports	4.1. Insect mass rearing					
monitor the prevalence of entomopathogens in insect colony	for routine monitoring of key entomopathogens developed for at least two SIT target species	y and peer reviewed systems are at high ri publications of infectious diseases Important pathogens insect mass rearing ca						
4.2.1. Identify endogenous and	4.2.1. Factors	4.2.1. Scientific	4.2.1. Latent pathogen					
exogenous factors contributing to the outbreak of latent infection	causing outbreak of latent infection identified for at least two SIT target species	reports and peer reviewed publications	infections are present in insect mass rearing colonies, and become activated by endogenous and exogenous factors					
4.2.2. Define and assess sanitary	4.2.2. Sanitary	4.2.2. Scientific	4.2.2. Mitigation					
protocols used to avoid the spread of insect diseases	protocols to suppress the spread of key entomopathogens defined and assessed for at least two SIT target species	reports and/or updated manuals and guidelines	measures can be developed to prevent the introduction and/or build- up of microbial or viral infection					
4.3. Develop and assess disease- resistant insect strains for SIT mass rearing	4.3. Insect strain resistant to specific entomopathogens developed and assessed under mass rearing condition for at least one SIT target species	4.3. Scientific reports and peer reviewed publications	4.3. Pathogen-resistant insect strains can be effectively used to minimize disease outbreaks					
4.4.1. Develop symbiont- mediated defence strategy	4.4.1. Symbiont- mediated defence strategy developed for at least one SIT target species	4.4.1. Scientific reports and peer reviewed publications.	4.4.1. Symbiont-mediated protection may be useful for mitigating disease outbreaks in mass rearing					
4.4.2. Develop entomopathogen management strategies that minimize the use of drugs and chemicals	4.4.2. Entomopathogen management strategies developed for at least one SIT target species	4.4.2. Scientific reports and peer reviewed publications	4.4.1. An integrated approach for pathogen management can be developed to sustain healthy colonies					

4. INDIVIDUAL WORK PLANS FOR THE NEXT 18 MONTHS

Activities / Names	. Jehle	Malele	D. A. Theilmenn	M. Ogliastro	/era Rose	S. Herrero, r	. M. Khamis	Anne Geiger	F. Njiokou	i. Weiss	agaheleguem	G. Tsiamis	P. Crisp	D. Haymer	. Schuenzel	B. Yuval	F. Mastrangelo	Bamaca	Ó. Dembilio	P. Liedo	D. F. Segura	IPCL
Develop genetic markers for target SIT species (1.1.1)	J	I.	ЦF	4	2	s	ĹŢ,	V	<u>Г</u>	В	x x	0	Ъ	x	Ξ	Ш	F	x	x	<u>ط</u>		x
Compare methods used to measure genetic diversity in a new insect colony (1.1.2)									x		x			x			x			x		x
Develop models to optimize minimum founding colony size for target SIT species (1.1.3)									х					x								x
Develop diagnostic tools for known entomopathogens (1.2.1)	x		x	x		x							x		x			x				x
Develop lists of entomopathogens that might impact new colonies of target SIT species developed (1.2.2)	x		x	x		x							x		x			x				x
Establish minimum performance levels in terms of mass rearing productivity (1.3.1)						x											x	x	x	x		
Establish minimum performance levels in terms of field performance (sexual compatibility and competitiveness, survival) (1.3.2)											x						x	x	x	x		
Monitor genetic changes in insect colonies under mass rearing (2.1)									x		x			x			x	х	х	x	x	х
Develop and apply diagnostic tools for important symbiotic organisms (2.2.1)		х					x		x	x	x	x	x		x				x	х	х	x
Develop methods to assess loss of important symbiotic organisms or their functions during continuous mass rearing (2.2.2)		х						x	x	x	x	x	x		x	x			x		x	
Assess remediation methods to address the loss of essential symbiotic organisms or their functions (2.3)										x						x			x		x	x
Develop methods to mitigate the loss of mating competitiveness, predator avoidance, longevity or circadian rhythm in target SIT species (2.4)								x						x				x	x	x		
Optimize cryopreservation methods to preserve insect colonies (2.5)													x						x	x		x
Optimize cryopreservation methods to preserve the insect microbiome (2.6)		x										x	x									
Assess methods used to measure and maintain the stability of specially designed or selected insect strains (3.1)																	x	х	x	x		
Develop best practices to avoid colony contamination (3.2)																	x					x
Develop diagnostic tools to monitor the prevalence of entomopathogens in insect colonies (4.1)	x	x	x	х	x	x	x				x	x	x		x							x
Identify endogenous and exogenous factors contributing to the outbreak of latent infection (4.2.1)	x		x	х	x	х		х														х
Define and assess sanitary protocols defined and assessed to avoid the spread of insect diseases (4.2.2)	x			x									x		x							x
Develop and assess disease-resistant insect strains for SIT mass rearing (4.3)	x		x									x										x
Develop symbiont-mediated defence strategies (4.4.1)								х		x	х											х
Develop entomopathogen management strategies that minimize the use of drugs and chemicals (4.4.2)		x		x		x	x				x		x		x							x

5. AGENDA

FIRST RESEARCH CO-ORDINATION MEETING

JOINT FAO/IAEA DIVISION OF NUCLEAR TECHNIQUES IN FOOD AND AGRICULTURE

"Improvement of Colony Management in Insect Mass-rearing for SIT Applications"

VIENNA, AUSTRIA

23rd -27th July 2018. VIC M5

Monday, 23rd July, 2018

SESSION 1

5.

- 08.00-09.00 Registration and Coffee
- 09.00-09.20 Rui Cardoso, Welcome and introduction
- 09.20-09.30 Adly Abd-Alla: Administrative details
- 09.30-10.00 Adly Abd-Alla: Update on research activities in IPCL.
- 10.00-10.15 COFFEE

SESSION 2

6.

- 10.15-10.45 **Johannes Jehle**, Jörg T. Wennmann, Jiangbin Fan: On the potential use of granulovirus-resistant codling moth strains for improving colony management.
- 10.45-11.15 **David A. Theilmann**: Genetic characterization of viral pathogens in *Cydia pomonella* SIT rearing facilities.
- 11.15-11.45 **Mylène Ogliastro**: Virus diversity and prevalence in Insect Mass Rearing: Friends or Foes?
- 11.45-12.15 Llopis-Giménez, Angel; González-Martínez, Rosa M; Llacer, Elena; Pérez-Hedo, Merixell; Urbaneja, Alberto; **Herrero, Salvador**: Three new RNA virus producing covert infections in field and laboratory insects of *Ceratitis capitata* (Wiedemann). Implications in SIT programs.
- 12.15-13.30 LUNCH

SESSION 3

- 13.30-14.00 Asimakis, E., Gouvi, G., Augustinos, A., Caceres, C., Abd-Alla, A.M.M., Bourtzis, K., **Tsiamis, G.:** Uncovering the unknown insect microbiome.
- 14.00-14.30 Fathiya M. Khamis, Samira A. Mohamed, Sunday Ekesi, Chrysantus M. Tanga, Fidelis L. O. Ombura and Sevgan Subramanian: Diversity of endosymbionts and entomopathogens of Dipteran pests and their impacts on dipteran mass-rearing for SIT applications.
- 14.30-15.00 **Anne Geiger** and Flobert Njiokou: Use of tsetse fly selected resident intestinal bacteria to control sleeping sickness.
- 15.00-15.30 **Flobert Njiokou,** Melachio-Tanekou T.T., Feudjio-Sofack S. & Geiger A.: Title: Genetic diversity and symbiont specific diversity in wild versus reared populations of *Glossina tachinoides*: estimation of temporal changes.
- 15.30-15.45 **COFFEE**

SESSION 4

- 15.45-16.15 **Brian Weiss**: Tsetse microbiota: form and function.
- 16.15-16.45 Hamis Nyingilili, Delphina Edward, **Imna Malele**: Identification and Isolation of Potential Useful Gut Microbiota for Improved Reared Tsetse Colonies earmarked for SIT Programs.
- 17.15-17.45 **Soumaila Pagabeleguem:** Establishment of new *Glossina palpalis gambiensis* strain from field at Burkina Faso and genetic renewal of 45-year old colony: What contributions of wild flies and what advantages in term of competitiveness?
- 17.45-18.00 General discussion

Tuesday, 24th July, 2018

SESSION 5

- 08:30- 09:00 Vera Ros: Hide and seek: understanding, detecting and controlling covert virus infections in mass reared insects.
- 09.00-09.30 **Peter Crisp,** Mohammed Sabbir Sidiqui, Lakshmi Nacey1, David Haymer: Tools for rapid identification of potential human and insect pathogenic micro-organisms.
- 09.30-10.00 **David Haymer**: Tools from quantitative and molecular genetics for management and improvement of mass reared insect colonies.

10.00-10.15 **COFFEE**

SESSION 6

- 10.15-10.45 **Erin Schuenzel**, Norman Barr, Don Vacek, Hugh Conway: Improving methodologies for microbial identification and diagnostics of pathogenic bacteria in mass-rearing of *Anastrepha ludens* and other tephritids.
- 10.45-11.15 **Boaz Yuval**: Flies, Fruit, and the Bacteria In Between.
- 11.15-11.45 **Thiago Mastrangelo**: Optimization of the management of *Anastrepha fraterculus* strains (Diptera: Tephritidae) aiming the SIT application in Brazil.
- 11.45-12.15 **Aparicio Bamaca**, Edwin Ramírez: Improving the performance of sterile males of *Ceratitis capitata* Wied and *Anastrepha ludens* Loew.
- 12.15-13.30 LUNCH

SESSION 7

- 13.30-14.00 Jaime García de Oteyza and Óscar Dembilio: Effects of Symbiotic Microorganisms on the Occurrence of Microbial and viral pathogens of Medfly in SIT programmes.
- 14.00-14.30 **Pablo Liedo**, José Salvador Meza-Hernández, Mayren Sánchez Rosario: Mass-rearing colony management for SIT application in *Anastrepha* fruit flies.
- 14.30-15.00 Diego F. Segura, Julieta Salgueiro, Claudia A. Conte, M. Teresa Vera, Lucia Goane, Andrea Bartolucci, George Tsiamis, Silvia B. Lanzavecchia: Domestication and irradiation effects on gut bacteria and reproductive symbionts of Anastrepha fraterculus and Ceratitis capitata.

15.00-15.15 **COFFEE**

SESSION 8

17.45-18.30 General Discussion of the Logical Framework and Formation of three Working Groups (see below)

Wednesday 25th July, 2018

SESSION 9

7.

08.30-09.45 General Discussion of the Logical Framework and Formation of three Working Groups (see below)

09.45-10.15	COFFEE
10.15-12.00	Working Group Discussions
12.10-17.00	Excursion to Seibersdorf laboratories
17:00-21:00	Group Dinner- TBD

Thursday 26th July, 2018 8. **SESSION 10** 9. 09.00-09.40 **Working Group Discussions** 09.45-10.15 **COFFEE** 10.15-12.30 **Drafting Working Group Report** 12.30-13.30 LUNCH 13.30-15.30 **Drafting Report** 15.30-16.00 COFFEE 16.00-17.00 **Drafting Working Group Report**

Friday 27th July, 2018

SESSION 11 10. 09.00-10.30 Reports of Working Groups Presentation

- 10.30-11.00 COFFEE
- 11.00-12.30 Drafting of CRP Report
- 12.30-13.30 LUNCH
- 14.00-14.30 **Presentation of CRP report**

Closing Remark

Suggestion of group division and chair persons Working Group 1: Fruit fly colony management (Room A2411) <u>Pablo Liedo</u>, Diego F. Segura, Óscar Dembilio, Aparicio Bamaca, Thiago Mastrangelo, Boaz Yuval, David Haymer,

Working Group 2: Tsetse fly colony management (Room MOE27)

Brian Weiss, Soumaila Pagabeleguem, Imna Malele, Anne Geiger, Flobert Njiokou,

Working Group 3: Pathogens^{*} (Room M5)

Johannes Jehle, David A. Theilmann, Mylène Ogliastro, Salvador Herrero, Vera Rose, Fathiya M. Khamis, George Tsiamis, Erin Schuenzel, Peter Crisp

*Members of this group can interact and participate in the meeting of other groups

6. LIST OF PARTICIPANTS

LIST OF PARTICIPANTS TO THE FIRST RCM ON IMPROVEMENT OF COLONY MANAGEMENT IN INSECT MASS-REARING FOR SIT APPLICATIONS From 23 to 27 July 2018 In Vienna, Austria

ARGENTINA

Mr Segura Diego Fernando Inst. Nacional de Tecnologia Agropecuria Rivadavia 1439 1033AAE BUENOS AIRES ARGENTINA Tel:0054 11 4450 1876 Email: <u>segura.diego@inta.gob.ar</u>

<u>AUSTRALIA</u>

Mr Crisp Peter South Australian Research and Development Institute (SARDI) Gate 2b, Hartley Grove; GPO Box 397 ADELAIDE 5001 SA AUSTRALIA Tel:0061 8 8249 0401 Email:peter.crisp@sa.gov.au

BRAZIL

Mr Mastrangelo Thiago Centro de Energia Nuclear na Agricultura Avenida Centenario, 303 Sao Paulo 13400-970 PIRACICABA BRAZIL Tel:55-19-3429-4664 Email: <u>piaui@cena.usp.br</u>

BURKINA FASO

Mr Pagabeleguem Soumaila

IBD-CETT (PATTEC Burkina) 1087, Avenue du Gouverneur Louveau, 5-37 BOBO-DIOULASSO BURKINA FASO Tel:20 97 15 21 Email:pagasoum@yahoo.fr

CAMEROON

Mr Flobert Njiokou Faculté des sciences Université of Yaounde B.P. 812 Yaounde Email: njiokouf@yahoo.com

CANADA

Mr David Theilmann

Summerland Research and Development Centre Agriculture and Agri-Food Canada (AAFC) Box 5000, Highway 97 Summerland, BC, V0H 1Z0 Canada Tel:1-250-494-6395 Email:david.theilmann@agr.gc.ca

FRANCE

Ms Anna Geiger Institut de la recherche pour le Développement (IRD) 44 Bd de Dunkerque CS 90009 13572 Marseille Cedex 2 Email: <u>anne.geiger@ird.fr</u>

<u>Ms Ogliastro Mylene</u>

Institut national de la recherche agronomique (INRA) - France, Montpellier 2, place Viala 34060 MONTPELLIER FRANCE Email: mylene.ogliastro@gmail.com

GERMANY

Mr Jehle Johannes Federal Research Centre for Cultivated Plants Julius Kuehn Institute (JKI) Heinrichstr. 243 64287 DARMSTADT GERMANY Tel:0049 6151 407220 Email: johannes.jehle@julius-kuehn.de

GREECE

Mr George Tsiamis University of Patras 2 Seferi Street 30100 Agrinio Email: gtsiamis1@gmail.com

GUATEMALA

Mr Aparicio David Bamaca Leiva

Programa Mosca del Mediterráneo (Programa MOSCAMED) Planta "El Pino", Km 47,5 Santa Rosa BARBERENA GUATEMALA Tel: 00502 8870430 Email: <u>Bamaca@elpinoguate.com</u>

ISRAEL

Mr Yuval Boaz

Hebrew Universiy of Jerusalem P.O. Box 12, 1 Hertzl Street hertzl street REHOVOT ISRAEL Tel:00972 8 9466768 Email: <u>boaz.yuval@mail.huji.ac.il</u>

<u>KENYA</u>

Ms KHAMIS Fathiya

ICIPE Plant Health Division PO Box 30772 NAIROBI KENYA Email: <u>fkhamis@icipe.org</u>

MEXICO

Mr LIEDO FERNANDEZ Jose Pablo

Departamento de Entomología; El Colegio de la Frontera Sur (ECOSUR) Carretera Antiguo Aeropuerto Km 2.5, Apartado Postal 36 30700 TAPACHULA CHIAPAS MEXICO Tel:9626289800 Email: <u>pliedo@ecosur.mx</u>

NETHERLANDS

Ms Vera Ros Wageningen University Droevendaalsesteeg 1 6708 PB WAGENINGEN NETHERLANDS Email: <u>vera.ros@wur.nl</u>

SPAIN

Mr Salvador Herrero Universitat de València Dr. Moliner 50 46100 BURJASSOT

VALENCIA SPAIN Tel: +34 963843006 Email: sherrero@uv.es

Mr Óscar Dembilio Vives

Centro de Control Biológico de Plagas (TRAGSA) Instituto Valenciano de Investigaciones Agrarias Km 10, CV-315, 7 46113 MONCADA VALENCIA SPAIN Tel:+34963424000 Email: <u>odembili@tragsa.es</u>

<u>UNITED REPUBLIC OF TANZANIA</u> Ms Imna I. Malele

Vector and Vector-Borne Diseases Institute (VVBD) P.O. Box 1026, Majani Mapana Off Korogwe Road Email: maleleimna@gmail.com

UNITED STATES OF AMERICA

Ms Schuenzel Erin The University of Texas Rio Grande Valley 1201 West University Drive 78539-2889 EDINBURG, TX UNITED STATES OF AMERICA Tel:001 956 665 2229 Email: <u>erin.schuenzel@utrgv.edu</u>

Mr David Haymer

Dept. of Cell and Molecular Biology 1960 East-West Rd, Biomed T511 University of Hawaii Honolulu, HI 96822 UNITED STATES OF AMERICA Tel:001 8089567661 Email: <u>dhaymer@hawaii.edu</u>

Mr Brian WEISS

Yale School of Public Health 60 College St, 607 LEPH NEW HAVEN, CT 06520 UNITED STATES OF AMERICA Email:brian.weiss@yale.edu

OBSERVERS

EGYPT

Mr Abd El-Salam Ahmed

Pests & Plant Protection Department Agricultural and Biological Research Division National Research Center CAIRO EGYPT Email: pestsandplantprotection2016@gmail.com

<u>Guatemala</u>

Mr Edwin Mauricio Ramírez Santos

Unidad de Producción de San Miguel Petacas Ministerio de Agricultura, Ganadería y Alimentación (MAGA) 16 calle 3-38, Zona 10 CIUDAD DE GUATEMALA 01010 GUATEMALA Tel: 00502 6631 7826 Email: <u>eramireztoo@gmail.com</u>

ISRAEL

Mr Zaada Doron Department of Entomology Hebrew University of Jerusalem P.O. Box 12, 1 Hertzl Street 76100 REHOVOT ISRAEL Email: doron.zaada@mail.huji.ac.il

MEXICO

Ms Orozco Dávila Dina Herlinda Susana

Campaña Nacional Contra Moscas de la Fruta; Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) Avenida Central Poniente No. 14 30700 TAPACHULA CHIAPAS MEXICO Tel:0052 962 6435029 Email: <u>dina.orozco@iica-moscafrut.org.mx</u>

Ms Sanchez-Rosario Mayren

El Colegio de la Frontera Sur (ECOSUR) TAPACHULA CHIAPAS MEXICO Email: masanchez@ecosur.edu.mx

Mr. José Salvador Meza Hernandez

Programa Moscas de la Fruta (MOSCAFRUT) SENASICA, IICA Metapa, Chiapas, México Tel:+52 962 643 5029 E-mail: jose.meza@iica-moscafrut.org.mx

SPAIN

Mr Garcia de Oteyza Jaime

Centro de Control Biologico de Plagas Poligono 9, Parcela 13. Paraje la Cantina 46315 CAUDETE DE LAS FUENTES SPAIN Tel:0034 962 319 521 Email: jgarciad@tragsa.es

THAILAND

Ms Aketarawong Nidchaya Department of Biotechnology, Faculty of Science, Mahidol University 272 Rama VI, Ratchathewee BANGKOK THAILAND Tel:00662 441 9820 ext. 1130 Email: nidchaya.akt@mahidol.ac.th

UNITED STATES OF AMERICA

Ms Aguirre Haymer Beatriz 454 Opihikao Pl HONOLULU, HI 96825 UNITED STATES OF AMERICA Tel:+1 808 956 5517 Email: <u>interpret.hi@gmail.com</u>

*Participant did not attend the 1st RCM in Vienna, Austria

7. NEXT MEETING

Location: Antigua, Guatemala

Period: 11-15 May, 2020

8. WORKSHOP

Tasks:"Genetic Diversity Analysis and Colony Management"Proposed Location:Guatemala City, GuatemalaDate:In junction with the 2nd RCM - 6-10 May, 2020Numbers of participants:~ 15