Building blocks of quantitative genetics

Karen Marshall

IAEA, Korea, April, 2006

Basis of inheritance Diploid parents Meiosis Haploid gamettes (sperm and egg) Fertilization Diploid offspring

Polygenic model

As the number of genes controlling a trait increases, the distribution of genetic effects becomes more normal

Quantitative traits are assumed to be controlled by genes at many loci: the polygenic model

Polygenic effects are the action and interaction of genes at a large number of loci, each with small effect

Basic quantitative genetics

Distributions of genetic effects

5 loci, 2 alleles / locus

2 loci, 2 alleles / locus

150 loci, 2 alleles / locus

Breeding value versus genetic value

P=G+E

P=A+NA+E

Genetic value (G)

❖ Value of genes to self

Breeding value (A)

Value of genes to progeny

Difference (G-A)

Non-additive effects e.g. dominance

Breeding value

Breeding values = the sum of the average effect of alleles (α)

Example

- * Singlue locus model;
 - Genotypic values are G_{A2A2} = -20, G_{A1A2} =0, G_{A1A1} =20
 - p=q=0.5
- ❖ An A1 gamete will meet an A1 or A2 gamete at equal frequency
- ❖ Progeny are thus 0.5 x A1A1 and 0.5 x A1A2
- The average value of the progeny is $0.5 \times -20 + 0.5 \times 0 = -10$
- Thus α_{A1} =-10 units
- ❖ Similarly α_{A2}=10 units

Basic quantitative genetics

No dominance, p=q=0.5

Genotype	A_2A_2	A_1A_2	$A_{I}A_{I}$
Value	280	300	320
Frequency	0.25	0.50	0.25
Pop'n mean		300	
Genetic value	-20	0	20
Breeding value	-20	0	20

$$\alpha_{AI} = 10$$

$$\alpha_{A2} = -10$$

- With no dominance the genetic and breeding values are equal.
- With equal allele frequency the average effects of A1 and A2 are of equal magnitude

Some dominance, p=q=0.5

Genotype	A_2A_2	A_1A_2	320	
Value	280	310		
Frequency	0.25	0.25		
Pop'n mean	305			
Genetic value	-25	5	15	
Breeding value	-20	0	20	

$$\alpha_{AI} = 10$$

$$\alpha_{A2} = -10$$

- With some dominance the genetic and breeding values differ.
- Dominance deviation is excluded from the breeding value.

Basic quantitative genetics

p=0.1, q=0.9, No dominance

Genotype	A_2A_2	A_1A_2	320 0.01		
Value	280	300			
Frequency	0.81	0.18			
Pop'n mean	284				
Genetic value	-4	16	36		
Breeding value	-4	16			

$$\alpha_{AI} = 18$$

$$\alpha_{A2} = -2$$

- With unequal allele frequencies the average effects of A1 and A2 are of different magnitude.
- The average effect of an allele is greater if the allele is rare.

Important points

Breeding values are expressed as a deviation of the population mean (with the population mean dependent on genotypic values and frequencies)

With no dominance G=A, with dominance G≠A

Animals with a rare allele will have a larger (either positive or negative) breeding value

Basic quantitative genetics

Breeding values and can be used to predict progeny performance

- Using example 1 from before:
 - Genotypic values are G_{A1A1}= 20, G_{A1A2}=0, G_{A2A2}=-20
 - p=q=0.5
- Genetic value of offspring from an A1A1 sire is

$$G_o = \frac{A+0}{2} = \frac{20}{2} = +10$$

- Check:
 - sire passes on A1, dams have equal frequency of A1 & A2,
 - progeny are equally A1A1 and A1A2, and (20x0.5 +0x0.5)=10

Breeding values can be used to predict progeny performance

- Using example 3 from before:
 - Genotypic values are G_{A1A1}= 36, G_{A1A2}=16, G_{A2A2}=-4
 - p=0.1 and q=0.9
 - average effect of A1=18, of A2= -2
- . Genetic value of offspring from an A1A2 sire is

$$G_o = \frac{A+0}{2} = \frac{16}{2} = +8$$

- Check:
 - sire passes on A1 and A2 in equal frequency, dams have frequency of A1 =0.1 & A2=0.9.
 - progeny are 0.5 (0.1 A1A1 + 0.9 A1A2) + 0.5 (0.1 A2A1 + 0.9 A2A2) = 0.5 (0.1x36 + 0.9x16) + 0.5 (0.1x16 + 0.9x-4)=8

Basic quantitative genetics

Breeding values are halved when used to predict progeny performance

- as breeding value represent the sum of the average effect of two alleles,
- only one of which is passed on.

Realised vs expected BVs

Realised BVs

- * are calculated from progeny performance
- ❖ BV=2 x (progeny mean population mean)

Expected BVs

 calculated from knowledge of genotypic values and allele frequencies

These differ because

- Allele frequencies vary from expected, especially for small progeny group sizes
- Effect of environment expectation of environmental effect is 0, but this is unlikely to be realised for small progeny group sizes.

Expect	ea			1	A1A1 sire					Realised
				Progeny	Sire allele		G	Ε	P	
				1	A1	A1	320	5.98	325.98	
				2	A1	A2	300	-3,30	296.70	
				3	A1	A1	320	.15,71	335.71	
				4	A1	A1	300	6.21	306.21	
				5 6	A1 A1	A2 A1	320 300	-6.40 -7.31	313.60 292.69	
Genotype	ر1ر <i>A</i>	ApA:	A_1A_2	7	A1	A1	300	-7,31	292.09	
	200	000	300	8	A1	A2	300	-11.65	288.35	
Value	280	300	320	9	A1	A1	300	10.81	310,81	
Frequency	0.25	0.50	0.25	10	A1	A2	320	5.00	325,00	
ricquency	0.23		V.Z.,			Average	308	1.18	309.18	Realised BV 21.78
Pop'n mean		300		1		Expect	310	0.00	310.00	Expected BV 20.00
				1	A1A2 sire					
Genetic value	-20	0	20	Progeny	Sire allele		G	Ε	- Р	
Breeding value	-20	0	20	1.1050.17	A1	A2	300	-8.65	291.35	
Diccomig value	-20	٥ ا	20	2	A1	A1	320	-21.82	298,18	
				3	A2	A1	300	-0.34	299.66	
				4	A2	A2	280	7.08	287.08	
				5	A1	A2	300	-7,20	292,80	
				6 7	A1 A2	A2 A2	300 280	0.96 -8.30	300.96 271.70	
_	v = 1	0		8	A2 A2	A2	280	-0.22	279.78	
v	AI ^	v		9	A2	A1	300	12.12	312,12	
				10	A2	A2	280	2.89	282.89	
0	$x_{AI} = I$ $x_{A2} = -1$	10				Average :	294 300	-2,35 0.00	291,65 300,00	Realised BV:: -13.28 Expected BV:: 0.00
			-		A2A2 sire			. X		
				Progeny	Sire allele		G	Ε	Ρ	
				11090117	A2	A1	300	5.57	305.57	
				2	A2	A2	280	1.46	281.46	
				3	A2	A1	300	2.61	302,61	
				4	A2	A2	280	-1,49	278,51	
				5 6	A2	A1	300	-3.48	296.52	
				6 7	A2 A2	A2 A1	280 300	-7.54 8.13	272.46 308.13	
				l á	A2 A2	A1	300	-2.66	297.34	
				9	A2	A1	300	-1.33	298.67	
				10	A2	A1	300	-0.88	299.12	
						Ауегвде	294	0,04	294.04	Realised BV: -8.50
						Expect	290	0,00	290,00	Expected BV -20.00
						Ov	erall avaara Expect		298 29 300 00	

Predicting effects

At simplest level, own phenotype can be used as the information source

$$\hat{A} = \frac{V_A}{V_B} P$$

$$\hat{A} = \frac{V_A}{V_P} P \qquad \qquad \hat{D} = \frac{V_D}{V_P} P \qquad \qquad \hat{E} = \frac{V_E}{V_P} P$$

$$\hat{E} = \frac{V_E}{V_R} P$$

Breeding Value

Dominance

Environment

Basic quantitative genetics

Heritability

Regression of A on P is equal to heritability

$$b_{A,P} = \frac{Cov_{A,P}}{V_P} = \frac{Cov_{A,A} + Cov_{A,NA} + Cov_{A,E}}{V_P} = \frac{V_A + 0 + 0}{V_P} = \frac{V_A}{V_P} = h^2$$

Predicting progeny performance

$$\hat{A} = \frac{V_A}{V_P} P = h^2 P \qquad \hat{G}_o = \frac{\hat{A}_m + \hat{A}_f}{2}$$

Note $G_o = (A_m + A_f)/2$ because

- ❖ G=A+NA+E
- ❖ NA and E are expected to be 0 on average
- $A=(A_m+A_f)/2$

Basic quantitative genetics

Example

$$h^2 = 0.25$$

$$\hat{A}_{Ram} = h^2 P = 0.25x20 = 5.0kg$$

$$\hat{A}_{Ewe} = h^2 P = 0.25x10 = 2.5kg$$

$$\hat{G}_0 = \frac{\hat{A}_{Ram} + \hat{A}_{Ewe}}{2} = \frac{5.0 + 2.5}{2} = 3.75kg$$

Note that +3.75 kg is the average we expect for a large group of progeny, individuals will deviate

Why do progeny of the same parents differ?

Genetic variation within families

- each individual received a random one-half of genetic material from each parent
- Mendelian sampling effects
 - e.g. V_{MS-full sib family}=0.5V_A

Environmental variation

systematic or random chance

Basic quantitative genetics

Extending to a QTL model

Genetic variance under a QTL model

- ❖ Few genes of large effect
- Many genes of small effect

$$V_P = V_A + V_{QTL} + V_{NA} + V_E$$