

Mixed linear model $y = X\beta + Za + e$ $BLUP(a) = \widehat{a} + AZ' \sigma_a^2 V^{-1}(y - X\widehat{\beta})$ $BLUE(\beta) = \widehat{\beta} + (X'V^{-1}X)^{-1}X'V^{-1}y$ These solutions can be obtained by mixed model equation (MME) $\left[\widehat{\beta}_{\hat{a}} \right] = \left[\begin{matrix} X'X & X'Z \\ Z'X & Z'Z + A^{-1}\alpha \end{matrix} \right]^{-1} \begin{bmatrix} X'y \\ Z'y \end{bmatrix} \qquad (\alpha = \frac{\sigma_e^2}{\alpha_a^2} = \frac{1 - h^2}{h^2})$ BLUP animal model

Example									
	Herd	Animal	Sire	Dam	Phen otype				
	1	1	0	0	100				
	2	2	0	0	130				
	1	3	0	0	120				
	2	4	1	2	110				
	1	5	4	3	140				
We want to estimate herd effects $(\hat{\beta})$ and random genetic animal effects (\hat{a})									
****					BLUP animal n	nodel			

Examp	e				
	Herd	Animal	Sire	Dam	Phenotype
	1	1	0	0	100
	2	2	0	0	130
	1	3	0	0	120
	2	4	1	2	110
	1	5	4	3	140
	(Cons	truc	ting	Z
	Γ	1 0	0	0 07	
		0 1	0	0 0	
		0 0 0	1	0 0	
		0 0	•		
	L	0 0	0	0 1]	
					BLUP animal model

NRM
If both parents (s and d) of animal i are known $r_{ij} = r_{ji} = 0.5(r_{js} + r_{jd})$ $j = 1 \sim (i - 1)$ $r_{ii} = 1 + 0.5(r_{sd})$
If only one parent (s) of animal <i>i</i> is known $r_{ij} = r_{ji} = 0.5(r_{js})$ $j = 1 \sim (i-1)$ $r_{ii} = 1$
If both parents (s and d) of animal <i>i</i> are unknown $r_{ij} = r_{ji} = 0$ $j = 1 \sim (i-1)$ $r_{ii} = 1$

Example (using MME)								
I	Herd	Animal	Sire	Dam	Ph en ot ype			
	1	1	0	0	100	-		
	2	2	0	0	130			
	I	3	0	0	120 110 140			
	2	4	1	2	110			
	1	5	4	3	140			
	С	onsti	ructi	ng X'	Z			
	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	0 1	1 0	0 1 1 (l)			
						BLUP animal model		

Example (u	sing	M	ME)	
HerdAr	imal Sire	Dam	Phenotype	
1	1 0	0	100	
2	2 0	0	130	
1	3 0	0	120	
2	4 1	2	110	
1	5 4	3	140	
Co	nstructi	ng Z'	Х	
	1 0			
	0 1			
	1 0			
	0 1			
	1 0]		
			BLU	IP animal model

Example (using MME)										
	Herd	Animal	Sire	Dam	Ph en ot ype					
	1	1	0	0	100					
	2	2	0	0	130					
	1	3	0	0	120					
	2	4	1	2	110					
	1	5	4	3	140					
Constructing Z'Z										
	ſ	1 0	0	0 0						
		1 0 0 1 0 0 0 0	0	0 0						
		0 0	1	0 0						
		0 0	1	0 0						
		0 0	0	1 0						
		0 0	0	0 1						
						BLUP animal model				

Example (using MME) Herd Animal Sire Dam Phenotype **Constructing MME** 0][1 2 0 0] $+A^{-1}\alpha$ 0 1 0 0 **BLUP** animal model

Practical session We will try 1. Simulating pedigree and phenotypic data 2. Estimating GLS and BLUP solutions with true h2 Compare TBV and EBV * with varying herd effects * without pedigree * without herd record * with wrong pedigree Compare MME method and iterative BLUP Selection response from BLUP or from phenotypes

