

EBV = h²P P is own phenotype, h² is heritability or an index weight on own phenotype for within flock selection on a single trait, ranking is the same as P EBV = b₁P₁ + b₂P₂ + b₃P₃ + P is an information source, e.g. own phenotype, information from relatives, correlated traits b is the index weight

Comparison to	contemporary
group	

	Single	Twins	
Males	60 Kg	55 Kg	57.5 Kg
Females	50 Kg	45 Kg	47.5 Kg
	55 Kg	50 Kg	52.5 Kg

Express P as deviation from contemporary group mean e.g. 57 Kg male twin has a P of 57-55 Kg = 2 Kg

Properties of BVs

Adjustr	ner	nt foi	r fixe	ed effe	ects
		Single	Twins		
Ma	les	60 Kg	55 Kg	57.5 Kg	
Fer	nales	50 Kg	45 Kg	47.5 Kg	
		55 Kg	50 Kg	52.5 Kg	
Adjust for effects interactions be • 57 Kg ma disadvant • Adjusted	e twee le twin aged b	n effects is advant by 2.5 Kg	S aged by 5 for being a	5 Kg for bein a twin	

• P (as deviation from overall mean) = 2 Kg

Properties of BVs

Examples of a	ccura	cies	
Information	h ² =0.10	h ² =0.30	Comment
Sire EBV (r _{IA} =0.5)	0.25	0.25	Dependant
Sire EBV (r _{IA} =0.5) + Dam EBV	0.35	0.35	on accuracy
(r_=0.5) Sife EBV (r _{IA} =0.9) + Dam EBV	0.51	0.51	EBVs
Owit operformance	0.32	0.55	√h²
Own performance + Sire EBV (r_{1a} =0.9) + Dam EBV (r_{1a} =0.5)	0.57	0.66	
Mean of 10 half-sibs	0.23	0.33	
Mean of 1000 half-sibs	0.49	0.50	Max is

0.70

0.58

0.98

Mean of 1000 full-sibs

Mean of 1000 progeny

Mean of 20 progeny

Max is

√0.50

Properties of BVs

0.71

0.79

0.99

(•••)

 Variance of EBVs = accuracy squared multiplied by the true breeding value

 variance of $EBVs = accuracy squared multiplied by the true breeding value

 * <math>V_{EBV} = r_{IA}^2 \cdot V_A$

 If accuracy = 0, the $V_{EBV} = 0$

 * All animals have same EBV, no power to discriminate which animals are the best

 If accuracy = 1, the $V_{EBV} = V_A$

 * Maximal variation in EBVs, good power to discriminate which animals are the best

53

•

$$V_{EBV} = r_{IA}^{2} V_{A}$$

$$PEV = V_{(A-EBV)} = (1 - r_{IA}^{2}) V_{A} \quad \text{PEV} = \text{Prediction error variance}$$

$$SEP = \sqrt{(1 - r_{IA}^{2}) V_{A}} \quad \text{SEP} = \sqrt{\text{PEV}}$$
With no information
* accuracy=0, variance of prediction error = V_{A}
With full information
* accuracy=1, variance of prediction error = 0

$$V_{A} = V_{EBV} + \text{PEV}$$
Properties of BVs

			f pred	
Accuracy	SEP	95%CI	95%CI	V _A =10
0.00	10.00	-20.00	20.00	EBV=0
0.10	9.95	-19.90	19.90	201 0
0.20	9.80	-19.60	19.60	
0.30	9.54	-19.08	19.08	
0.40	9.17	-18.33	18.33	
0.50	8.66	-17.32	17.32	
0.60	8.00	-16.00	16.00	
0.70	7.14	-14.28	14.28	
0.80	6.00	-12.00	12.00	
0.90	4.36	-8.72	8.72	
1.00	0.00	0.00	0.00	

55