

Gene Mapping

An alternative end point for MAS

- ✤ Haplotype spanning 1-5 cM
- Information content can be similar to that of a direct marker, depending on extent of linkage disequilibrium

Gene discovery

The steps $1 \text{cM} \rightarrow -1$ million bp containing -10 genes Unknown location to ~20cM region achievable via 'broad-scale' linkage mapping * ~20cM region to <2cM region ٠ various approaches, including LD mapping usually require significant animal resources \$ possibly the most difficult step ٠ <2cM region to gene and functional mutation positional candidate and other approaches * may need to sequence through large regions for a number of \diamond animals Gene discovery

Strategies for refining region from $20cM \rightarrow 2cM$

Fine-scale linkage mapping

Linkage disequilbrium mapping (also linkage disequilibrium – linkage mapping)

Multi-generational QTL mapping e.g. targeted recombinant progeny

197

Linkage disequilibrium (LD) mapping Basis Linkage mapping considers the linkage disequilbrium that exists within families LD mapping considers the linkage disequilbrium that occurs across the *entire population*. Pure LD mapping disregards pedigree structure LD and linkage mapping can be combined → LDLA mapping

LD mapping	
ancestral hapiotype	NU A TX C A T Summer and the second s
contemporary haplotype 1	
contemporary haplotype 2	
contemporary haptotype 3	
contemporary haplotype 4	
	Gene discovery

Linkage disequilibrium (LD) mapping Basis * For LD to occur across the entire population, and not be broken down over generations, the QTL and marker must be closely linked * LD mapping is applicable to • region of ~20cM or less (i.e. in LD) for sheep / cattle • historical data, where analysis is performed over generations • industry data, where analysis is performed over families

• half-sib data, if QTL is assumed to be segregating in dams

Linkage disequilibrium (LD) mapping

Reality

- Powerful method, although merit of *linkage* vs *LD* vs *LDLA* depends on underlying extent of LD / mutation age and data structure, and continues to be evaluated by simulation
- Only recent move to storage of DNA from breeding animals / experimental flocks, thus historical pedigree and phenotypes may be available but DNA is often not
- Successfully used to refine QTL positions e.g.
 - QTL for milk traits refined to 3cM by LD
 - QTL for twinning rate refined to <1cM by LDLA
 - numerous QTL in human literature

Gene discovery

Targeted Recombinant Progeny

Basis

 Essentially 'multi-generational QTL mapping' but optimised to reduce genotypes / phenotypes

♦ Steps

- · Produce many progeny from a heterozygous sire
- Identify those individuals that are recombinant within the region of interest
- Progeny test these individuals to determine if segregating for the QTL
- Determine QTL location via 'breakpoint analysis'

Heifetz, Fernando and Soller 7th WCGALP

From 20cM → 2cM paper and paper

From <2cM to gene and functional mutation

General gene identification strategies

- Positional cloning
 - Uses knowledge of the mapped location of the gene
- Functional cloning
 - Uses knowledge of the protein encoded by the gene
- Candidate gene
 Gene identified as good candidate
- Approaches can be taken in combination
 "Positional candidate" approach

Gene discovery

....

<section-header>

Identifying functional mutation

Identifying the functional mutation is usually required as 'proof' that the candidate gene is actually the gene of interest

Achieved by

* sequence 'Q' and 'q' individuals and look for mutations

- predict whether mutation will make a functional difference
- confirm by e.g. sequencing different populations, transgenic studies

