karani

 Predicting the phenotypic superiority of selected parents

Predicting superiority of progeny generation

Response to selection I

لوعيدا

A more useful way to determine S directly (as in the previous slides) it is more useful to determine S from a knowledge of the selection policy

Determining S from knowledge of the selection policy

First determine selection intensity (i)

- Selection intensity (*i*) is the number of phenotypic standard deviation units that selected parents are superior to the mean
- *i* is obtained from selection intensity tables according to the proportion (P) of animals selected as parents

Response to selection I

28

()

Response to selection I

From R _{gen} to R _{year}
It is also useful to determine response per year (R _{year})
This requires calculation of the generation interval (L)
Response to selection I

()

Age	2	3	4	5	6	
Males	5	5				
Females	100	100	100	100	100	
Age	2	3	4	5	6	
Age	2	3	4	5	6	
Age Males	2 10	3	4	5	6	
	·····	3 125	4 125	5	6	

$$R_{year} = \frac{i_m + i_f}{L_m + L_f} \sigma_P h^2$$

Thus high i \rightarrow high L & low i \rightarrow low L
 \Rightarrow this does not fit well with maximising i / L
The *best compromise* between i and L is required

Response to selection I

(2.3

Response to selection I

