Response to selection II

Karen Marshall

IAEA, Korea, April, 2006

Response will be examined for

Own phenotype
$$R = ih^2\sigma_P$$
 $R = ih\sigma_A$

Repeated measures

Correlated traits

Selection on BLUP EBVs / selection indices

Why do repeated measures differ?

Repeated measures differ due to temporary environmental effects

$$V_E = V_{EP} + V_{ET}$$

Environmental variance (V_F) =

environmental variance due to permanent effects (V_{EP}) + environmental variance due to temporary effects (V_{ET})

Response to selection II

Errors with repeated measures

	E for measurement # 1 to 5; drawn from N(0,1) *					
Animal	1	2	3	4	5	Mean
1	-0.66	-1.01	-0.09	0.01	-1.44	-0.64
2	-1.40	2.11	0.64	1.53	1.46	0.87
3	0.67	0.66	-0.35	-0.80	-0.11	0.01
4	-0.94	0.48	0.32	-0.03	-1.75	-0.38
5	1.16	0.39	0.41	0.22	0.32	0.50
6	0.01	-1.73	1.85	1.22	0.09	0.29
7	-0.37	-0.97	0.75	0.76	2.65	0.56
8	-1.58	1.72	0.66	-0.83	-1.99	-0.40
9	-0.01	-0.81	-0.21	-2.11	-0.75	-0.78
10	-1.71	-0.43	-0.02	0.31	0.94	-0.18
11	0.62	-1.27	-0.45	-0.37	0.09	-0.28
12	0.15	-0.99	0.62	-0.74	0.25	-0.14
13	1.37	-1.04	-1.46	-0.24	0.38	-0,20
14	-1.42	-0.85	-0.14	0.97	1.83	0.08
15	-1.16	-1.36	-1.22	-1.06	0.43	-0.88
StdDev	1.01	1.15	0.82	0.97	1.29	0.50

^{*} Environmental measurements were randomly drawn from a normal distribution with mean 0 and standard deviation of 1.

Repeatability

Defined as

$$r = \frac{V_G + V_{EP}}{V_G + V_{EP} + V_{ET}}$$

ranges from 0 to 1

The larger the temporary environmental effects the lower the repeatability

Response to selection II

Response using repeated measures

When the mean of repeated measures are used, temporary environmental effects tend to cancel out.

 $V_{P_n} = V_A + V_{PE} + \frac{V_{TE}}{n}$

This results in a reduction in V_P (and σ_P)

$$V_{P_n} = \left(r + \frac{1-r}{n}\right)V_p$$
 $\sigma_{P_n} = \sqrt{\left(r + \frac{1-r}{n}\right)}\sigma_p$

Response using repeated measures

Response when selecting on one measure

$$R = ih^2 \sigma_P = i\frac{V_A}{V_P} \sigma_P = i\frac{\sigma_A \sigma_A}{\sigma_P \sigma_P} \sigma_P = i\frac{\sigma_A}{\sigma_P} \sigma_A$$

Response when selecting on mean of n measures

$$R_n = ih^2 \sigma_{Pn} = i\frac{V_A}{V_{Pn}} \sigma_{Pn} = i\frac{\sigma_A \sigma_A}{\sigma_{Pn} \sigma_{Pn}} \sigma_{Pn} = i\frac{\sigma_A}{\sigma_{Pn}} \sigma_A$$

Proportional decrease in phenotypic standard deviation equates to proportional increase in response

$$R_n = R \frac{\sigma_P}{\sigma_{Pn}}$$

Response to selection II

Additional response using repeated measures

Additional response depends on repeatability

	n=2	n=5	
r=0.10	35 %	89 %	
r=0.50	16 %	29 %	
r=0.90	2.6 %	4.3 %	

Highly repeatable traits

- · measurements are similar
- additional measurements add little additional information repeated measures result in a small additional increase in response

Correlations between traits

Genetic basis

- · Genes are pleiotrophic
 - same genes influence the traits
 - e.g. weights over ages, response in two environments
- . Genes for each trait are linked and thus inherited together

Environmental basis

- · Environmental conditions affecting both traits
 - · e.g. muscle and fertility both affected by nutrition

 r_G and r_E do not need to be the same sign

Response using correlated traits

$$CR_y = b_A R_x$$
 $R_x = i_x h_x^2 \sigma_{Px}$
 $CR_y = i_x r_A h_x h_y \sigma_{Py}$

correlated response in trait y when selecting on trait x

genetic correlation

phenotypic standard deviation for trait with correlated response

selection intensity (i) for trait you are selecting on

CR_v/R_v

Response for indirect selection for a trait relative to response for direct selection for a trait

$$\frac{CR_{Y}}{R_{Y}} = \frac{i_{x}r_{A}h_{x}h_{y}\sigma_{Py}/L_{x}}{i_{y}h_{y}^{2}\sigma_{Py}/L_{y}} = \frac{i_{x}h_{x}L_{y}}{i_{y}h_{y}L_{x}}r_{A}$$

Use of correlated response

Indirect selection

- Select on trait X, but interested in response of correlated trait Y
- Useful if trait X is more heritable or can be measured earlier
- May be only option is trait Y is too difficult or expensive to measure

Response to selection II

Example

- Objective is to increase weight in Atlantic Salmon
- Can either select on weight directly, or select on length with a correlated response in weight
 - h² weight = 0.09
 - h^2 length = 0.16

•
$$r_A = 0.95$$

$$\frac{CR_{y}}{R_{y}} = \frac{i_{x}h_{x}L_{y}}{i_{y}h_{y}L_{x}}r_{A} = \frac{h_{x}}{h_{y}}r_{A} = \frac{\sqrt{0.16}}{\sqrt{0.09}}0.95 = 1.27$$

selecting on length gives 27% more response in weight then selecting on weight directly (length is more heritable and correlation is strong)

Example

- ❖ If weight was the more heritable trait
 - h^2 weight = 0.39 h^2 length = 0.16 $\frac{CR_{\gamma}}{R_{\gamma}} = \frac{i_x h_x L_y}{i_y h_y L_x} r_A = \frac{h_x}{h_y} r_A = \frac{\sqrt{0.16}}{\sqrt{0.39}} 0.95 = 0.608$
 - $r_A = 0.95$

selecting on length gives less response in (weight is more heritable)

Response to selection II

Example

- ❖ If the genetic correlation is weak
 - h^2 weight = 0.09
 - h² length = 0.16 $\frac{CR_{\gamma}}{R_{\gamma}} = \frac{i_x h_x L_y}{i_y h_y L_x} r_A = \frac{h_x}{h_y} r_A = \frac{\sqrt{0.16}}{\sqrt{0.09}} 0.15 = 0.20$

• $r_A = 0.15$

selecting on length gives less response in weight then selecting on weight directly

Use of correlated response

To account for genotype x environment (G x E) interactions

For example, wish to compare

 Breed animals in environment A, with animals sold to commercial users in environment A (direct response)

$$R_x = i_x h_x^2 \sigma_{Px}$$

 Breed animals in the more favourable environment B with animals sold to commmercial users in environment A (correlated response)

$$CR_y = i_x r_A h_x h_y \sigma_{Py}$$

Response to selection II

G x E interaction

At breed / individuals level

- different breeds / individuals rank differently in different environments
- difference between breeds / individuals is smaller or larger in different environment

Selection accuracy and response

Selection accuracy $R = i \sigma_A r_{I,A}$

- * Range is 0 to 1
 - 0 is no information, 1 is full information
- Relates to heritability
 - low heritability → less accuracy
- Can be improved
 - · use of repeated measures
 - · information from correlated traits
 - information from relatives, especially progeny testing

More information → more accuracy → more response

Response to selection II

Reaslised versus predicted response

These can differ due to

- * Random drift
- Incorrect heritability estimates
- Inbreeding
- Non-random mating
- Natural selection
- Maternal effects
- Variance loss due to selection
- Environmental variation
- Selection limit reached

Additional reading on this topic

Falconer, D. S. (1989) Introduction to quantitative genetics, 3rd edition. Longman Scientific and Technical, Essex, England

* Chapter - Selection; I The response and its prediction

Cameron, N. D. (1997) Selection indices and prediction of genetic merit in animal breeding. CAB International, Oxon, UK.

❖ Chapter 4 – Identification of animals of high genetic merit