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Foreword 
 

This guideline attempts to assist managers in the use of mathematics in area-wide Integrated 
Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes 
mathematical tools that can be used at different stages of suppression/eradication programmes. For 
instance, it provides simple methods for calculating the various quantities of sterile insects required 
in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can be 
achieved. The calculations, for the most part, only involve high school mathematics and can be 
done easily with small portable computers or calculators. 

The guideline is intended to be a reference book, to be consulted when necessary. As such, 
any particular AW-IPM programme using the SIT will probably only need certain sections, and 
much of the book can be ignored if that is the case. For example, if the intervention area is 
relatively small and well isolated,  then the section  on dispersal  can safely be ignored,  as  the 
boundedness of the area means that dispersal should not be a problem, and so the section on 
diffusion equations can be ignored. An overview is given in each chapter to try to let the 
programme manager make a decision about where to put the programme efforts. 

On the other hand, most SIT programmes have an information system (many of them based 
on GIS) that produces reliable profiles of historic information. Based on the results of past activities 
they describe what has happened in the last days or weeks but usually do not explain, or barely 
explain, what is expected in the following days or weeks. Current AW-IPM progammes using the 
SIT have produced over many years a vast amount of every-day data from the field operations and 
from the mass rearing facility and packing and sterile insect releasing centres. With the help of this 
guideline, that information can be used to develop predictive models for their particular conditions 
to better plan control measures. 
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1. Introduction 
Managers of the area-wide insect pest management (AW-IPM) programmes that include the 

sterile insect technique (SIT) can benefit from using mathematical approaches, particularly models, 
when implementing control programmes especially when these are used to calculate required rates 
of sterile insect releases needed to achieve suppression or eradication of pest populations. The 
benefit and the difficulty of a mathematical approach is evident when one considers the large 
number of models that have been proposed and analyzed in order to deal with complicating factors 
that affect the outcome of control measures. 

Recognition of the  need for more ecological realism led to the  development of many 
models for the use of the SIT that incorporated more biological features as well as, in some cases, 
climatic and ecological factors not present in the original SIT model produced by E. F. Knipling 
(1955). Some of the additional factors pertain to the quality of the sterile insects released 
(survivorship, residual fertility, mating competitiveness, etc.), others are part of the wild population 
to be controlled (age structure, reproduction capacity, dispersal rate, etc.), and some others are 
related to the environment (number and host distribution, seasonal weather, presence/absence of 
human settlements, etc.). These models have been summarized by Barclay (2005) and provide one 
view of the population dynamics of pests under control by SIT implementation as well as assessing 
the importance of each of the biological features modeled. The generalizations in Barclay (2005) 
were reinforced and extended by Itǒ and Yamamura (2005) in their chapter on the dynamics of 
populations under control by the SIT. 

Many mathematical methods are available that can be used as tools to increase the technical 
efficiency or to foresee likely outcomes under certain conditions in SIT programmes; however, 
many people not specifically trained in mathematics might have trouble interpreting symbolic 
equations. In addition some field biologists have traditionally distrusted the use of mathematics in 
biology because of the simplification required (or imposed) by mathematics when describing 
systems that are complex and variable. However, developments in modeling and computation have 
enabled ever more realistic models. One example is the inclusion of spatial variation, which is very 
apparent to field biologists, and has only recently been included in SIT models  by means  of 
statistics and Geographic Information Systems (GIS). 

A recurring feature of early models of the SIT has been that predicted sterile insect release 
levels required for eradication of a pest population (critical release rates) have been greatly below 
those that were found to be necessary in control measures in the field. The reasons for this 
underestimation of critical control rates have not been immediately apparent, though some have 
been elucidated by new SIT models that incorporate biological and ecological features not 
previously considered. Other likely causes for underestimation the result are complications not 
foreseen by the AW-IPM programme managers (efficiency of devices to measure pest populations, 
role of marginal and urban areas in the intervention areas, sterile insect quality). Yet other causes 
are still elusive, as those related to the logistics of the field activities. 

The critical sterile insect release rate (i.e., the release rate that separates success from failure 
of the control measures), is addressed in section 8.8. Based on the number of generations the target 
pest completes per year, there are two approaches to estimating the critical sterile insect release 
rate; one is for univoltine species with one relatively short reproductive period each year and in 
which generations do not overlap; the other is for multivoltine species that reproduce more or 
less 
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continuously during the growing season. The distinction between them is that  for  univoltine 
species, the existing sterile insect population following a release is exactly the size of the release 
(assuming the released individuals all survive) whereas in the case of continuous growth, each daily 
or weekly release simply adds to the population of sterile males that are still alive from previous 
releases. 

The next chapter gives a list of features for which knowledge is required for the success of 
an AW-IPM programme using the SIT together with the relevant chapters of the guide. 
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2. Requirements of a sterile insect release programme 
The requirements for mathematical approaches to any SIT programme can be inferred by 

the equations for SIT that have been published over the years. For example, the Knipling equation 
(Knipling 1955) is 

Nt+1 = λNt (Nt / (S + Nt)) (1) 
 
It contains only three kinds of quantities: the population size N, the sterile release rate S, and the 
rate of population increase per generation λ. At equilibrium (i.e., steady state, which in this case is 
unstable), one can solve for S and find that S = (λ-1)N. Thus, λ, S and N are part of the equations of 
the simplest SIT model. 

The mathematics useful for SIT programmes is used to solve particular aspects of the SIT 
requirements. Some of the chapters contain background mathematical material for understanding 
the population  dynamics of  SIT  while others contain techniques for performing the  necessary 
estimations. The following is a list of SIT requirements together with the appropriate chapters to go 
to in order to satisfy each requirement. 

1. Population size: 

• Sampling for estimation outlined in Chapter 3 

• Estimates outlined in Chapters 4 and 8 
• Equations outlined in Appendix 2 

 
2. Fecundity: 

• Outlined in Chapter 6 

 
3. Survivorship: 

• Outlined in Chapters 6 

 
4. Sterile male competitive ability: 

• Outlined in Chapter 7 

 
5. Residual fertility after sterilization: 

• Outlined Chapter 7 

 
6. Population aggregation: 

• Outlined in Chapters 3 and 7 

 
7. Immigration and dispersal: 

• Outlined in Chapters 6, 7 and 10 

 
8. Age structure: 
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• Outlined in Chapters 5, 6 and 7 and Appendix 1 

 
9. Overflooding ratio: 

• Outlined in Chapter 7 and 8 and Appendix 1 

 
10. Forecasting populations: 

• Outlined in Chapter 5 

 
11. Buffers around control areas: 

• Outlined in Chapter 11 

 
12. Assessing eradication status: 

• Outlined in Chapter 12 
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3. Sampling insect populations for surveys 
3.1 Why sample? 

 

In order to obtain information on the size of a pest population or any other information that 
is required for planning the control measures, the population must be sampled. Beyond the size of 
the pest population, information obtained from such a sample might allow the programme 
managers to assess the sex ratio, spatial distribution, determine if there are ‘hot spots’ where the 
insects congregate, estimate the age structure of the population, etc. This information will be useful 
in planning the control measures to be applied, and even in determining the type of these measures. 

There are many possible methods of sampling insects and the ecology and habits of the 
species will help determine which methods are most appropriate. It is also important to note that 
most commonly used statistical tests rely on random sampling, so the analysis of the sampled data 
will depend on the sampling design used. Sampling designs are dependent on pest distribution, as 
discussed below. 

3.2 Why assess pest distribution? 

If pest spatial distribution is regular (uniform) or random, monitoring is relatively easy. 
Traps can be placed anywhere and results can be expected to be typical of the entire area. The 
sample size can be small because the pest situation is nearly the same throughout the entire 
intervention area. However, if the spatial distribution of insect pests is aggregated (clumped), then 
if only a few traps are used, it might be that few or none of them are in a cluster, and thus very 
biased results could be obtained. This means that more traps have to be used to make sure that all 
conditions within the intervention area are sampled and that trapping results can be trusted. 

If the spatial distribution of pests is regular or random (Fig. 1), then the results of models 
such as those of Knipling and others, that assume spatial homogeneity, are directly applicable in 
SIT programs. On the other hand, if the spatial distribution is aggregated (clumped, Fig. 1), then the 
sterile release rate resulted from these models will have to be adjusted to meet the requirements of 
the density of the clumps. 



6  

 
 
 
 

  
 

  
 
 

Figure 1. Examples of spatial distributions: 
 
3.3 Sampling methods 

 

Quadrats (Gleason 1920) are areas defined by boundaries within which all individuals of a 
species are counted. They are most useful for species that don’t move, such as plants. Traps can be 
considered to be a form of quadrat, inasmuch as they represent a sampling point, in which the 
boundaries would be defined by the area of attraction of the traps; if attractants are used, these 
boundaries may move as the wind blows the plume of attractant around, and insects may fly into 
and out of the area of attraction. Additionally, with attractants only receptive individuals in the 
population may be sampled. Sweep nets, eggs, larvae and pupae counts, fruit damage, etc. can also 
be used, although they usually provide only relative measures of the population (Southwood 1978). 

 
3.3.1 Sampling designs and associated analyses 

There are several commonly used sampling designs, each with its own strengths and 
weaknesses. We will examine three common designs and compare the results (Simple Random 
Sampling (SRS), Stratified Random Sampling, and Cluster Sampling). In all the designs below, 
there is a feature that is left out, and that is the sampling fraction, or finite population correction. It 
is rarely determinable in ecological or pest control activities and for large populations (as pest 

Regular 
Random 

Moderately Clumped 
Highly Clumped 
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populations tend to be) and it has very little effect and will thus be ignored. Those interested in 
further details on sampling designs may consult Green (1979) and Krebs (1999). 

Simple Random Sampling. SRS is a common design for sampling items in which the probability of 
sampling all items in the population is the same and they are easily available for sampling. This is 
useful for monitoring surveys where the aim is to understand population dynamics. Ideally, each 
individual would be identified and tagged with a unique number, and then random numbers would 
be used to identify which individuals would be included in the sample. This may be feasible for 
some political or sociological surveys where the population size is known, but it is seldom possible 
with animals that move, especially with large populations, most of which are not visible to the 
people doing the sampling. In these cases the best approach may be to conduct “pseudo-random” 
sampling, where sampling is not mathematically random, but is generally undirected (somewhat 
haphazard) and not obviously biased. Most people feel that sweep nets, traps, and egg, larvae and 
pupae counts can be adequate when care is taken to avoid bias during haphazard sampling. For 
example, true simple random sampling may require sampling in areas in which it is obvious that 
there are no insects present. Often judgement is needed to justify whether or not a sample can be 
considered sufficiently representative of the study area. 

Means and variances of the samples form unbiased estimates of means and variances for the 

population. The mean is the simple average; the variance is a measure of the variability of the data 
and is the mean of the squared deviations from the sample mean, the standard deviation is the 
square root of the variance; the standard error is a measure of the standard deviation of the sample 
mean and is estimated by dividing the standard deviation of the data by the square root of the 
sample size. If many samples were taken (all of the same size) and the mean was computed for 
each sample, then the standard error is the standard deviation of these sample mean values. Strictly 
speaking, the population does not have a standard error, as standard error depends on the sample 
size. Thus, the unbiased estimate of the mean of a population is the sample mean, i.e., the sum of 
the observations divided by the sample size 

y = ∑yi / n (2) 
 

where y is the sample mean, yi  is the value of the ith  observation and n is the sample size (i.e. the 
number of observations used in computing the mean). The variance of the data is 

Var(y) = ∑ (yi – y)2/(n-1) = (∑y
2 – (∑y)2/n )/(n-1) (3) 

 

and the standard deviation of the data is the square root of the variance: 

 
SD = √(Var(y)) (4) 

 
The variance of the estimate of the mean is 

 
Var(y) = (∑y

2 – (∑y)2/n )/(n-1) / n (5) 
 

where n is the number of means. The standard error is the square root of the variance of the mean: 
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S.E. = √Var(y) (6) 
 

Thus, for example, suppose a sample of insects has been taken and the egg production measured in 
the laboratory; the egg production for six females was 24, 27, 43, 56, 33 and 17. The mean of these 
data is then 

y = (24 + 27 + 43 + 56 + 33 + 17) / 6 = 200 / 6 = 33.3 eggs per female. The variance is Var (y) = 

((242 + 272 + 432 + 562 + 332 + 172) – (200)2/6) /5 = 200.27 The standard deviation is SD = √200.27 

= 14.15, and the standard error is S.E. = 14.15/√6 = 14.15 / 2.45 = 5.78. 
 

These measures describe the average value of eggs per female and the variability of the data 
around the mean, and the standard error shows how much the average may vary by chance from 
one sample to another. 

Stratified Random Sampling. Stratified random sampling (StRS) is done by splitting the 
population into identifiable subpopulations (strata) and then doing simple random sampling within 
each stratum. This is particularly useful for detection and delimiting surveys. For example, if one 
wants to determine the abundance of a particular insect species in a given area, and if  the 
abundance of the species is known to vary among land use zones, it would make sense to partition 
the area into zones such as commercial orchards, abandoned orchards, human settlements, urban 
areas, forest, etc. Sampling would then be done in each of these zones separately and then the 
results analyzed together taking into account the sampling scheme. 

Usually simple random sampling would be done within each zone and the sample size 
would be proportional to the surface of the zone (or the number of  individuals  available  for 
sampling in the zone). If the sample size is not known, then an intelligent guess is usually better 
than no information at all. Many fruit flies species infest different species or varieties of fruits and 
vegetables, so it makes sense, when sampling them on their hosts, to sample each host species 
separately and tabulate the results for the various host species separately. This is especially useful if 
the variability in insect numbers between host species is greater than the variability within each 
host species, and, in this case, the standard errors of the estimates are smaller than for simple 
random sampling without stratification. 

In sampling fruit fly populations it is common practice, before a SRS, to implement a 
sequential stratification starting from partitioning the area, selecting host species based on host 
preference, selecting fruit based on infestation symptoms and then finally a SRS of fruit with 
infestation symptoms. An example is using fruit sampling as a detection tool for the Mediterranean 
fruit fly. Before applying an SRS on coffee berries with infestation symptoms, sequential 
stratification is implemented by directing sampling to the primary host (in this case coffee berries), 
sampling fully ripened berries and sampling during the time of the year when availability of berries 
is scarce. This procedure greatly improves the likelihood of detection by reducing randomness. 
Under certain conditions, this procedure has been used in the medfly eradication programme as the 
preferred detection tool, often detecting the pest as larvae infesting coffee berries prior to detecting 
adults in traps (Programa Moscamed, 2012). 



9  

 
 

This design lends itself to analysis of the data by means of random blocks analysis of 
variance. Estimators for the population mean and variance of the mean are as follows. 

The population mean, µ is estimated by: 
 

y = Σ(L) 
ni xi / n (7) 

 

where y is the sample overall mean, Σ(L) is the sum over the L strata that were sampled, ni is the 
number of individuals sampled in the ith stratum, xi is the mean of the individuals sampled in the ith 

stratum, and n is the total number of insects sampled from all the strata. It is assumed that the 
numbers, ni, of insects sampled from the various strata are proportional  to  the  total  numbers 
existing in each of the strata. If that is the case, then the sample mean for StRS will be the same as 
for SRS. Generally, however, it will not be known how many insects are in any of the strata, so 
judgement will be needed in determining the sample sizes, ni, for each of the L strata. There are 
formulas for computing the mean for non-proportional sampling, but these require the  total 
numbers in each stratum, so they are not presented here (but see Cochran (1977) for more 
information on these). 

The variance of the estimate of the mean is estimated by 
 

Var(y) = (1/n2) Σ(L) (ni)2 (si)2 (8) 
 

where  (si)2 = Σ(ni)   (xij – xi)2 / (ni -1),   (i.e., the sample variance of the ith stratum) 
 

Then the standard error is 
 

√ [(1/n2) Σ(L) (ni)2 (si)2] (9) 
 
Cluster sampling. Cluster sampling consists of concentrating samples in units that are easily 
sampled, such as sampling fruits on trees, each tree representing a cluster of fruit. In this case 
several, or all, individuals within each cluster are included in the sample. For example, if a 
programme manager wanted to sample fruit fly larvae in each of several fruits of host trees being 
attacked by a particular species, she or he could first randomly choose several trees from the 
orchard, and then randomly choose several fruits from each tree for examination; in this case the 
numbers of larvae per fruit would be the data collected, so the total number of larvae found in a 
given fruit would be recorded. For pest detection purposes this is much easier than trying to sample 
the fruits completely at random from all the trees in the orchard. The distinction between cluster 
sampling and stratified sampling is that the strata together cover the whole population and sampling 
is done on each stratum; on the other hand the clusters are easily identifiable and easy to sample, 
but only some of the clusters (trees) are sampled. For example, strata might consist of tree species 
of hosts, whereas clusters might consist of individual host trees. If the trees of different species are 
intermixed, then trees of a given species would not be any easier to sample than trees chosen 
randomly, whereas sampling branches from a single tree may be much easier than  randomly 
sampling branches from several trees. 
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Cluster sampling works best if the variability of larval counts among fruits within a tree is 
greater than the variability among trees; however, this is seldom the case, as there are many factors 
that tend to make individuals within a cluster more similar to each other than they are to those on 
other trees. One such factor is that insects may attack trees at random, but once within a tree, most 
of the fruits in the tree are attacked and most of the insects within a fruit may be related. We 
consider here only the case of equal sized clusters and equal sized samples from each cluster. The 
appropriate analysis design for data using cluster sampling is nested analysis of variance in which 
replicate samples are taken from a common source (Sokal and Rohlf 2012). 

For a single level of nesting of clusters, assume there are N clusters in the population and we 
sample n of them. Also, each cluster consists of M individuals and we sample m of them from each 
cluster. 

The population mean, µ is estimated by y, where y is: 

y = (Σ(n) (Σ(m) 
n yij)/m) / n (10) 

 

here, i goes from one to n and j goes from 1 to m, and yi,j is the value of the jth observation in the ith 

cluster. The  variance  of the  estimate of the  mean is  estimated  by adding two components of 
variance. The variance of the cluster means is 

s1
2 = Σ(n) (yi – y)2 / n-1 (11) 

 

where yi is the mean of the ith cluster, y stands for grand mean, and i goes from 1 to n. The variance 
within clusters is 

s2
2 = Σ(n) Σ(m) (yij – yi)2 / n(m-1) (12) 

 

where j goes from 1 to m, i goes from 1 to n and yi  is the mean of the i
th  cluster. Finally, the 

variance of the estimate of the grand mean, ygm, is 

Var(y) = s1
2/n + s2

2/mn (13) 
 
3.3.2 Examples 
These three sampling designs are illustrated by computing the mean and variance of the mean for 
each of simple random sampling, stratified random sampling and cluster sampling using the data 
set in Table 1. Table 1 consists of hypothetical numbers of larvae in fruit in fruit trees that were 
constructed so that there would be a similarity of numbers of larvae in fruits within each tree, as 
there normally would be in nature. To compare the calculations of the three designs, we will 
calculate the mean and variance for each one. 

Simple random sampling: Here we calculate the mean and the variance as if  the  data  were 
collected using simple random sampling from throughout the orchard, while recognizing that the 
data were not really gathered randomly. Given this assumption, the mean is the sum of all the larval 
numbers divided by the number of fruit: 

y = ∑y / n = 824/80 = 10.3 (14) 
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The variance of the mean is given by 
 

Var(y) = [(∑y
2 – (∑y)2/n )/(n-1)] / n = [(12752 – (824)2/80) / 79] / 80 = 0.675 (15) 

 

and the standard error of the mean (se) is then √0.675 = 0.822. 
 
Stratified random sampling: Here we assume that the eight trees are the only trees in the orchard, 
so that each tree becomes a stratum, and that the ten fruit are sampled randomly throughout each 
tree. The distinctive feature here is that all the trees are sampled and each fruit has an equal chance 
of being sampled. The mean under StRS is 

y = Σ(n) 
ni xi / n  = (10/80)(11.9 + 3.3 + … + 4.6) = 82.4/8 = 10.3 (16) 

 

The variance of the mean is 
 

Var(y) = Σ(n) (ni/n) (si
2/n) = Σ(8) (10/80) (49.21+8.68+ … +16.93) / 80 = 0.367 (17) 

 

and the standard error is √0.367 = 0.606. 

 
Cluster Sampling: Here we assume that the eight trees were sampled at random from an orchard 
containing many trees, and that the ten fruit per tree were sampled at random from within each tree 
once they had been selected. In this case, each fruit had an equal chance of being selected before 
the trees were selected, but after the trees were selected, only fruit on those eight trees could be 
selected. Thus, in for the formula below, mi = 10 for all clusters, and n = 8. 

The mean is 
 

y = (Σ(n) (Σ(m) 
yij / m) / n  = Σ(n) (11.9 + 3.3 + 10.1 + … + 4.6) / 8  =  10.3 (18) 

 

where  y  is  the  grand  mean,  yij   is  the  jth  observation  in  the  ith  cluster,  m  is  the  number  of 
observations in each cluster, n is the number of clusters and nm is the total number of observations. 

The variance of y = s1
2/n + s2

2/mn, where s1
2 is the variance among the i cluster means, s1

2 = Σ(n) (yi 

– y)2 / (n-1), so 
 

s1
2 = [(11.9 - 10.3)2 + (3.3 - 10.3)2 + (10.1 - 10.3)2 + … + (4.6 - 10.3)2] / 7 = 215.04/7 = 30.72 

 
and s2

2 is the variance among subunits within clusters, s2
2 = Σ(n) (Σ(m) (yij – y)2) / n(m-1), so 

 

s2
2 = [ (21 – 11.9)2 + (14 – 11.9)2 + (0 – 11.9)2 + … + (10 – 11.9)2

 

 
+ (5 - 3.3)2 + (3 - 3.3)2 + (0 - 3.3)2 + … + (3 - 3.3)2

 

 
+ (14 - 10.1)2 + (10 - 10.1)2 + (9 - 10.1)2 + … + (11 - 10.1)2 + … 
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+ (4 – 4.6)2 + (0 – 4.6)2 + (0 – 4.6)2 + … + (13 – 4.6)2 ] / 8(9)  = 29.37. 
 
Then the variance of the estimate of the mean is y = s1

2/n + s2
2/mn, 

 

Var(y) = 30.72 / 8 + 29.37 / 72 = 3.84 + 0.408 = 4.21 
 

and the standard error of the mean is √4.21 = 2.05 

 
We can see from this that in this example, most of the contribution to the Var(y) is in the variability 
of the cluster means as a result of differing numbers of larvae in different trees.. 

Calculations using these three designs yield the same mean, and that will always be true if 
the sample sizes of the strata and clusters are equal. However, the variances of the mean are 
different. The lowest variance of the mean, and therefore the most precise estimate, comes from 
stratified random sampling. This will usually be true, especially if the strata are quite different in 
their mean values of the observed variable and the variation within a stratum is less than the 
variation among strata, as is the case in Table 1. The calculation of the variance of the mean under 
SRS does not take into account the variation among strata, as the strata cover the whole population 
of interest, at least locally. Cluster sampling produced the highest variance of the mean (i.e., the 
least precise estimate) and thus it might seem that cluster sampling should be avoided. However, 
the apparently higher  precision using SRS or StRS when clusters are really being used  is an 
illusion; it is false precision because the design really calls for calculations appropriate to cluster 
sampling. Also, the reduced cost of cluster sampling might compensate for the lowered precision. 
Since the number of units in a cluster are often more similar to each other than to units in other 
clusters, the precision is lowered by reduction in the effective sample size. However, this is a 
justified reduction in the sample size because the units in a cluster are not really independent, but 
are correlated with each other. 

In general, the variance of the mean using cluster sampling is larger than the other two 
because the variation among clusters is usually much greater than the variation within clusters. This 
may be because of properties of the cluster (e.g., differing resistance of the trees to infestation by 
larvae) or simply to chance (the tree just happened to be found by an ovipositing female), or 
perhaps because of other factors. The calculation of the variance of the grand mean for clustered 
data takes account of this variation among clusters; calculation by the formula for SRS does not 
take this into account and it is therefore inappropriate if cluster sampling was used. 

The biological and logistical situation of the study should dictate which sampling design 
and method of calculation to use. To calculate the variance of the mean using the calculations for 
simple random sampling when the sampling really was done by cluster sampling ignores the real 
design and the results of the calculations, although mathematically correct, are misleading because 
they are not appropriate. The variance calculated by the wrong method is less likely to contain the 
true value being estimated and so can’t be trusted. 

3.4 Sampling distributions 
When we sample fruit fly adults using traps whose locations are spatially identifiable, the 

traps in locations where there happen to be a high density of individuals would be expected to catch 
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more individuals than those traps located where individuals are scarce. If we count the adults 
caught in traps in a given day, we can graph the counts and get a frequency distribution of counts. 
For example, we might have found 22 cases where the trap count was zero, 37 cases where the trap 
count was one, 44 cases with two flies, 26 cases with three flies, 12 cases with four flies, 1 case 
with six flies and none with more than six flies (Table 2). We can describe the resulting graph by 
one of several theoretical distributions. Such a graphic representation of the frequencies of trap 
counts is called a frequency distribution of trap counts. The distribution can tell us something about 
the spatial distribution and density of the individuals, although not in much detail unless the counts 
are also related to a map of the area sampled. 

 
3.4.1 The Poisson Distribution 
If the spatial arrangement of the individuals is random, then the distribution of counts will conform 
to a theoretical sampling distribution called the Poisson distribution (Sokal and Rohlf 2012). The 
Poisson distribution is specified by the formula: 

P(x) = λx 
e

–λ / x! (19) 

 
Here x is the number of individuals found in the trap, P(x) means the probability of a trap or other 
sampling device having x insects in it, λ is the mean number of flies found per trap, and λ is also the 
variance (this is a definitional property of a Poisson distribution), and x! (called “x factorial”) 
represents x(x-1)(x-2) … (1). If x = 1, then x! = 1; if x = 0, then x! is defined to be 1. This leads to 
the expression for the zero term of the Poisson distribution; if x = 0, then both λx and x! are 1.0, so 
that P(0) = e

–λ, meaning that a proportion e
–λ of traps would be empty on the basis that the mean 

trap catch was λ and that the empty traps would represent the probability that no insects encounter 
and are caught by the trap, if flies encounter traps randomly. A collection of trap results can be 
tested against the Poisson distribution by means of a χ

2 statistical test using the observed trap 
results and the theoretical predictions of the Poisson distribution (Sokal & Rohlf 2012). However, a 
simpler way is outlined below. 

 
3.4.2 The Negative Binomial Distribution 
If the spatial arrangement is aggregated (i.e., clumped), then the frequency distribution of the trap 
samples will not generally follow a Poisson distribution, but usually will approximately follow the 
Negative Binomial distribution (NBD). The NBD is specified by the formula: 

P(x) = [(k+x-1)(k+x-2) ….(k) / x!] [Px / (1+P)k+x] (20) 
 
The mean of the NBD is µ = kP, where k and P are the two parameters that define a given NBD. A 
decrease in k results in an increase in the frequency of larger numbers (aggregation). Thus the 
parameter k can be used as a measure of the degree of aggregation. As the population becomes 
more aggregated, the value of k decreases towards zero. As the population becomes less aggregated 
and approaches random placement of individuals, the value of k increases towards infinity. The 
value of k for a given NDB may be calculated by the methods outlined by Bliss & Fisher (1953), 
which will give a measure of the degree of clumping. 

Another way of estimating whether a species has a random or clumped distribution is to 
calculate a statistic known as the Coefficient of Dispersion (CD), which is the sample variance 
divided by the sample mean (Southwood, 1978). If the insects are randomly located in space, then 
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the CD will be close to 1.0, because the mean is equal to the variance in the Poisson distribution; if 
the insect population is clumped, then CD > 1.0, and the variance will be greater than the mean; if 
the population is more uniformly distributed than random, then CD < 1.0. It is not the best index, 
but it is the simplest and usually works well except in sparse populations. In sparse populations, the 
CD is usually near 1.0 even for clumped populations. The decision of whether the spatial 
arrangement of a population is random or clumped is made by comparing the n-1 times the CD 
with a χ2 goodness-of-fit statistic with n-1 degrees of freedom, where n is the number of trap 
samples being analyzed. 

Using the data provided in Table 2, the mean is calculated using X = ∑ X / n 

X = (26(0) + 7(1) + 2(2) + 13(3) + 25(4) + 6(5) + 1(6)) / 80 = 186 / 80 = 2.325 

The variance is calculated using Var(X) = (∑ X2   –  (∑X)2 / n) / (n-1) 
 
Var(X) = [(26(02) + 7(12) + 2(22) + 13(32) + 25(42) + 6(52) + 1(62) – (186)2/80] / 79 

 
=  [(0 + 7 + 8 + 117 + 400 + 150 + 36) – 34596/80] / 79 

 
=  [718.0 – 432.5] / 79  =  3.61 

 
In this case the coefficient of dispersion is 

CD = Var(X) / X  =  3.61 / 2.325  =  1.55 

and n-1 times the CD is a form of computed χ2 statistic, where n is the number of quadrats or traps 
(here n-1 = 79). 

Then we compare the computed value of χ2 (79x1.55 = 122.45) with a χ2 statistic with ν = 79 
degrees of freedom; this is found in a table of χ2 statistics (Table A1) under χ2

0.05,79 and it is  100.75 
If the value of the χ2 that is computed from the data is bigger than the χ2 found in the table, then we 
reject the idea that the dispersion is random and conclude that the population is aggregated because 
the computed χ2 (i.e. the (n-1)CD) is bigger than the tabled χ2. In that case, it is useful to plot the 
trap results on a map of the area and discover where the clumps are. Table A1 gives values of 
χ2

0.05,ν for degrees of freedom (ν) of 1 to 80. For higher values, an approximate value of the critical 
value of χ2 can be found from the formula: χ2

0.05,ν =  (1.645 + √(2ν – 1))2 / 2.  Thus, for example, if 
we wanted to find a value of χ2

0.05,ν for ν (= n-1) = 150, then we get χ2
0.05,150  = (1.645 + √(300 – 

1))2 / 2 = (1.645 + 17.292)2 / 2 = 179.305. 

If the CD is much greater than 1.0, then we may want to estimate the parameter k to 
characterize the population. Southwood (1978) gives three methods of estimating k. The simplest 
method is to use 

k = x2 / (s2 – x) (21) 
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although it is only accurate for sparse populations. However, sparse populations are where the CD 
fails to discriminate between aggregated and random dispersion, so that this estimator of k will be 
useful where the Coefficient of Dispersion is not. The other two methods of estimating k require 
iterative solutions, involving guessing values and continuing until an equality is satisfied, whereas 
the estimator given above is easy to compute. If we apply the last formula to the data above, we get 

k = 2.3252 / (3.61 - 2.325) = 5.41 / 1.285 = 4.21. Thus, according to the parameter k, the spatial 
distribution of the population is somewhat clumped. 

 

We could also apply the CD and k to the data in Table 1. It is clumped in columns (which represent 
trees). For Table 1 the mean is 10.3 and the SRS variance is 80(0.675) = 54.0, so that the CD = 5.24 
and the estimate of k is k = 10.32 / (54.0 – 10.3) = 2.43. Thus it appears that the population is 
clumped, but we have no indication of where the clumping is unless we plot the trap catches on a 
map  (see  textbooks  such  as  Chiles  and  Delfiner  (1999),  Wackernagel  (2003),  for  use  of 
geostatistics as a tool for assessing spatial distribution of insect populations). 

 
3.4.3 The Binomial Distribution 
The binomial distribution has also been used for insect numbers, and is appropriate when the 

spatial distribution is more uniform than random. This is probably not often the case for insects, 
although it is useful for animal species with territorial behaviour. Also, it is only useful  for 
population units that have an upper limit in number (such as insect larvae on leaves, where there is 
only space for a certain number). The binomial distribution assumes that each space for an insect 
on a leaf has a given probability of being occupied. The formula for the binomial distribution is 

P(x) = (n!/(n-x)!x!) px (1-p)n-x (22) 
 
where P(x) is the probability of x occurrences (in this example larvae on the leaf) and n-x empty 
spaces, p is the probability of a space being filled and 1-p is the probability of the space not being 
filled. Again, n! is n(n-1)(n-2)(n-3) … (1). 

The binomial distribution applies to data in which there are only two possible states and a 
finite number of cases. For example, the number of girls (or boys) in families with six children is 
binomially distributed. If the probability of a child being a girl or a boy at birth is 0.5 for each, then 
the probability of a family with six children having 5 girls is: 

P(5) = [6! / (1!)(5!)] (0.55) (0.51)  =  [(720)/(1)(120)] (0.03125)(0.5)  =  0.09375 
 

Note that P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1.0 because these are the only 
possibilities for the numbers of girls in families of size six. Since the probability of a newborn child 
being a girl or a boy is 0.5 for each outcome, the probabilities for boys are the same as for girls. 

 

4. Population estimation 
The estimation of pest population size is of value in planning control activities because the 

release of sterile males relies on knowing population size in order to assess the amount of control to 
be imposed. It is also of value in calibrating the various relative methods of population estimation, 
such as observing infestation levels, the use of trapping measures such as flies per trap per day, and 
observing egg masses, or fruit punctures in order to be able to use them as estimates of actual 
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population size. It is also of use in assessing the progress of a control programme (see also the 
trapping guidelines of the IAEA (IAEA 2003)). 

4.1 Absolute estimation of population size: Mark-recapture methods 
This method of estimation will be most useful for longer lived insects, such as species of 

fruit flies, especially tephritids, and less useful for shorter lived species, such as Drosophilids, 
whose life expectancy is only a few weeks. In addition it may not be logistically possible to capture 
wild flies in sufficient numbers to mark them, release them, and then recapture them in sufficient 
numbers to obtain reliable estimates by this method. For fruit flies, the conventional method of 
estimation is by releasing a known number of marked sterile males and then recapturing them in 
lower numbers together with wild flies. An exhaustive and useful description of Mark-Recapture 
methods is given by Service (1993). 

 
4.1.1 General features of mark-recapture methods: 
(1) Two or more samples of individuals are taken at distinct times. After all except the last capture, 
the captured individuals are marked and then released. Also, for each capture after the first one, 
individuals are checked for marking before marking and releasing. 

(2) The length of time between samples is sufficient to allow mixing of the marked individuals with 
the wild population, but not long enough that a sizeable portion of the population dies. The marked 
(and released) individuals are assumed to completely intermix with the rest of the population before 
the next capture. 

(3) The marked individuals are assumed not to be affected by marking; being captured does not 
affect the probability of being recaptured. 

(4) All individuals have the same probability of surviving to the next time period. 

(5) All samples are taken randomly; all individuals have an equal probability of capture. 
 

(6) Marks are not lost; all marked individuals remain marked. 
 

Mark-recapture methods yield estimates of absolute population size, rather than just being 
indices of relative abundance, such as would be the case with sticky traps or egg, larval or pupal 
counts. 

 
4.1.2 Lincoln (Peterson) Index 
The Lincoln index is the oldest and simplest of the mark-recapture methods (Le Cren, 1965). It 

uses two samples: an initial sample, with subsequent marking and release, and then one more 
sample for counting the marked and unmarked individuals. In addition to the assumptions listed 
above, the Lincoln index assumes that there are no births, deaths, immigration or emigration of 
individuals in the population between the two sampling periods. This index is based on the 
assumption that the ratio of the total population to the number caught (and then marked) in the first 
sample is the same as the ratio of the size of the second sample to the number that are found to be 
marked. In symbols: 

N / M = n / m (23) 
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so that the estimate of population size is 

 
N = n M / m (24) 

 
where N is the unknown total population size to be estimated, M is the number of individuals in the 
first sample (all of which were marked before release), n is the size of the second sample and m is 
the number of marked individuals in the second sample. The variance of the estimate of population 
size is 

Var (N) = M2 
n (n-m) / m3 (25) 

 
Thus, if the initial trapping sample yielded 105 adult flies all of which were marked and 

then released, and if a second sample of 99 adult flies yielded 17 marked individuals and 82 
unmarked individuals, then the Lincoln estimate of population size would be N = (99)(105) / 17 = 
611 individuals and the variance of the estimate of N would be Var(N) = (1052)(99)(82)/173 = 
18217. This estimate is easy to obtain, but it is biased. The bias is negligible for large sample sizes, 
but serious for small samples. In addition, for many insect species, life expectancy is not long and 
individuals move freely out of and into the sampling area, violating the assumptions of no births, 
deaths, immigration or emigration. However, for short-lived insect species, other estimation 
methods requiring more recaptures may not be feasible. The bias can be reduced or eliminated by 
use of the estimator: 

N* = M (n+1) / (m+1) (26) 

 
And the bias of the variance is similarly reduced by the estimator 

 
Var(N*) = M2 (n+1) (n-m) / (m+1)2 (m+2) (27) 

 
(Service 1993). In the example above, the less biased estimate of the mean would be (105)(100) / 
18 = 583 and of the variance of the estimate of N would be (105)2(100)(82)/(182)(19) = 14686. 
Notice that both the estimates of N and variance of N are overestimated by the original formulae.  It 
is recommended that the m be greater than 10 for the estimates to be satisfactory. For a description 
of methods of marking insects, see Southwood (1978), Service (1993) and Hagler and Jackson 
(2001) and Guillen (1984) (specifically for tephritid fruit flies). 

 
4.1.3 Jolly-Seber Index 
The full Jolly-Seber method (Jolly 1965; Seber 1965) is a stochastic approach that uses multiple 
releases and recaptures and can allow births, deaths, immigration and emigration of individuals. 
Thus the restrictions are fewer, but the data requirements are greater compared with the Lincoln 
Index. The Jolly-Seber method is better suited to species that are relatively long-lived and survive 
well in the field (i.e., with a life expectancy greater than one month), such as with many species of 
Anastrepha and Bactrocera. For this method to work, we need at least three captures: one initial 
capture at which insects are marked and released, and then at least two recaptures at which marking 
and releases are made at all except the last recapture. The recaptures should be sufficiently long 
after the releases that random mixing of the population occurs. From these we can estimate 
population size as well as birth rate, death rate and emigration. 
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The Jolly-Seber index allows deaths and emigration, but it also assumes that if they occur, 
both are  permanent. Although deaths are  permanent, emigration often is not. However, if  the 
amount of emigration is relatively small, this assumption is not a big problem. Many insect species 
have a relatively low daily survivorship, so we only present here the case for five captures and four 
releases. Having more than five capture periods provides little extra information, except to increase 
overall sample size and precision. Those interested in mark-recapture experiments with more than 
five capture periods should consult Seber (1982). 

One important requirement of the Jolly-Seber index is that it requires unique marking of 
individuals captured at each sample, so that recaptures can be identified with respect to when they 
were previously caught. Thus, the first sample might be marked with red dye, the second with blue 
dye, etc. Since we are dealing with five capture samples, and only four of them need to be marked, 
four unique marking schemes are required. Any marked individual from the first marked release 
that is caught again in the second capture will be marked again and thus have two different marks, 
and similarly for subsequent recaptures. Thus in the fifth capture sample the capture history of each 
insect in the sample will be evident from the marks it carries. If four distinct marking schemes are 
not possible, then fewer sampling periods could be used. In practical use, almost no insects will 
carry four different markings, unless a large proportion of the population is being captured and they 
are quite long-lived. 

The following variables must be evaluated by observation or calculation (notation from 
Seber (1982)) for the Jolly-Seber index. In what follows, the word “insect” is taken to mean “insect 
of the species being estimated”. 

ti – time when the ith sample is taken (t will probably be in days or weeks). 
 
Ni – total number in the population just before time ti. 

 
Mi – total number of marked individuals in the population just before time ti. 

ni – total number of insects caught in the ith sample. 

mi – number of marked insects caught in the ith sample. 
 
Ri – number of marked insects released after the ith sample (any damaged insects are not marked 

and released. 

 
ri – number of marked insects from the release of Ri insects which are subsequently recaptured. 

 
φi – proportion of insects that die or emigrate from time i to time i+1. 

 
zi – the number of insects caught before the ith sample which are not caught in the ith sample but are 

caught subsequently where i is any sampling day after the first and before the last one. 
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Bi – the number of births in the ith time period. 
 
There is no direct estimate of N1. The estimators are as follows: 

 
Mi = Ri zi / ri + mi (28) 

 
Ni = Mi ni / mi (29) 

 
φi = Mi+1 / (Mi - mi + Ri) (30) 

 
Bi Ni+1 - φi (Ni - ni + Ri) (31) 

 
The estimate of most interest will usually be Ni = ni Mi / mi at each time i, which is of the same 
form as that in the Lincoln estimate. However, we also have estimates of the death rate, φi, and 
birth rate, Bi which will be important in constructing life tables. With more  capture  samples 
estimates of both of these quantities become more accurate. One common confounding factor is 
that the population size may change over the course of the measurements. 

 

Table 3 shows the steps taken in the calculation of the final estimates. Detailed calculations 
of these steps are shown here to illustrate. In Table 3a are listed the numbers captured last at time h 

of the marked insects captured at time i, for any h < i and any i > 1. These are summed for each 
row and the sums printed at the right, and these are the number from the release Rh that are 
subsequently recaptured, where the initial time of capture, h, is listed down the left column and 
times, i, of subsequent recaptures are listed at the top. The columns are also summed and the sums 
listed at the bottom, these being mi, the number of marked insects in sample i. The numbers 
captured at each time, i, are listed at the top together with the numbers marked and released, Ri. 

Table 3b shows the numbers, chi, caught in the ith sample that were last caught in or before the hth 
sample. These are also summed by rows and the sums listed in the right hand column, denoted zi+1. 
These values are then used to compute the estimates of M, ρ, N, φ and B as above seen in Table 3c. 
Using the data in Tables 3a and 3b, we compute the following. 

 

M2 = (143)(10)/60 + 10.0 = 33.83 
M 3 = (164)(33)/46 + 37 = 154.65 
M 4 = (202)(23)/30 + 56 = 210.87 
N2 = 33.83/0.0685 = 493.87 
N3 = 154.65/0.2189 = 706.49 
N4 = 210.87/0.2679 = 787.12 
φ2 = 154.65/(33.83 – 10.0 + 143.0) = 0.9270 
φ3 = 210.87/(154.65 – 37.0 + 164.0) = 0.7487 
B2 = 706.49 – 0.9270(493.87 – 146.0 + 143.0) = 251.45 
B3 = 787.12 – 0.7487(706.49 – 169.0 + 164.0) = 261.91 

 
These are seen in Table 3c. The differences over time partly reflect sampling error and partly 
changes in the parameters themselves. 
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These estimates are also biased, as are the Lincoln estimates, and the bias can be mostly 
corrected by using the modified estimators. It is recommended that both the mi and ri be greater 
than 10 for the estimates to be satisfactory. More accurate estimators (Seber 1982) are: 

Mi
* = (Ri + 1) zi / (ri + 1) + mi (32) 

Ni
* = Mi

* (ni + 1) / (mi + 1) (33) 
* 

φi
* = Mi+1

* =  / (Mi 

Bi
* = Ni+1

* - φi (N 
*
 

- mi + Ri) (34) 
- ni + Ri) (35) 

 

In the study on the black-kneed capsid (Jolly 1965) there were 13 sampling events; we have 
only considered the first five of the 13. The estimates using 13 sampling events were all about 10- 
20% higher than using only the first five samplings. This may be because of the fact that the 
population was increasing during the sampling period and some of the data from later samplings 
were used in the computations of the earlier estimates. Obviously, a greater number of sampling 
events is desirable, but practical considerations often restrict what one can do in practice. 

 
4.1.4 Joint Hypergeometric Estimator 

A large class of population size estimators has been developed for wildlife management 
(Seber 1982; Pollock 1990; White and Burnham 1999). Many of these methods assume that marked 
animals may be sighted multiple times after release, such as the widely used Cormack-Jolly-Seber 
method (Cormack 1964; Lebreton 1992). Several other more recent methods have been developed 
for the general purpose of estimating population size, individual daily survival and a range of other 
parameters on animals larger than insects and are built around powerful statistical models 
(Lebrenton et al 2012; Pollock 1990). 

One of the newer methods that apply to insects is the Joint Hypergeometric Estimator, or 
JHE (Bartmann et al 1987). JHE uses numerical iteration to maximize a likelihood function based 
on the hypergeometric distribution, a discrete distribution of the number of successes (recaptures) 
in a finite population (size N) containing a maximum number of successes (marked individuals) 
without replacement. Thus this estimator is appropriate for situations where a known number of 
marked individuals are released into a natural population and then recaptured over multiple 
occasions and not replaced, such as when marked insects are released and recaptured over several 
days in traps. The likelihood function that is maximized (N-|Mi , ni , mi) is equal to 

 
 

K 

i   

m     n m  
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(36) 

 

where N- is the estimated population size, Mi is the number of marked individuals that are in the 
population on sampling occasion i, ni is the total number captured on occasion i,mi is the number of 
marked individuals recaptured on occasion i and i=1 to k total capture occasions. 

 

The JHE includes fewer assumptions than those in the methods already discussed: no 
movement out of the area, marks that are not lost and no failure to identify marked individuals. 
Requiring fewer assumptions comes with requiring more parameters. Importantly, the probability 
of sighting any given individual, marked or unmarked, is assumed to be equal, though the 
probabilities don’t have to be equal between sampling sessions (Neal et al 1993). Since the number 
of  individuals  available  for  recapture  Mi   can  vary,  it  is  possible  to  consider  mortality  and/or 
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movement out of the study area in this variable. For most practical studies mortality will have to be 
estimated and included in the analysis. 

Currently the JHE can be estimated via the program MARK (White and Burnham 1999) or 
via the older program NOREMARK (White 1996). Baber et al 2010 use the JHE in a study on 
mosquitoes during the wet and dry seasons in Mali (see following Table B), and also calculate the 
estimated population size using the simpler Lincoln Index approach for each of their multiple 
releases and recaptures (see following Table C). Their results are a useful numerical example 
showing how the methods compare. 

Table B. Estimated population sizes for Fourda from the study of Baber et al 2010 using the joint 
hypergeometric maximum likelihood estimator from the program NOREMARK with varying daily survival 
rates. 

 

 March 2008  July 2008 

Daily Survival Estimate 95% CI a Estimate 95% CI a 

0.6 1687 1191-2537 10507 7608-15156 

0.8 3659 2556-5547 21450 15484-31015 

0.9 5378 3746-8172 30293 21849-43830 

 
 

a CI, confidence interval. 
 
 
 
 
 
 

Table C. Instantaneous Population Size Estimated via Lincoln Index in the study of Baber et al 2010, 
calculated via equations (25) and (26). 

 

Recapture date M n M N* SD(N*) 

17 March 2008 101 75 4 1535 606 

18 March 2008 85 120 5 1715 632 

19 March 2008 79 74 3 1481 645 

03 July 2008 148 160 7 2979 968 

04 July 2008 126 166 2 7014 3475 
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05 July 2008 144 187 4 5414 2181 

06 July 2008 157 385 1 30301 17449 

07 July 2008 299 235 3 17641 5700 

 
 

4.2 Relative estimation of population size: Monitoring and detection 
 

4.2.1 Trapping for monitoring 
Trapping is commonly used to monitor pest populations. This simply gives general 

information on the seasonal abundance, spatial distribution and host sequence but does not usually 
yield information on the absolute size of the pest population unless mark-recapture methods are 
also used, or a connection is made between the usual trapping and mark-recapture estimates (see 
below). Initially, for population monitoring, simple random sampling is the recommended sampling 
method (see section 3.3.1). If the trapping technique for the insect being monitored is powerful 
(i.e. capable of detecting low numbers in a large area), then lower trap densities may be used, as a 
single capture will  signal the presence of the pest species. This is in  contrast to trapping for 
evaluating effectiveness of suppression and eradication measures, where a higher trap density is 
usually required. Based on the initial results obtained from population monitoring, trapping should 
be more like a stratified random sampling where traps are placed in locations where the pest is 
known to occur. 

 
4.2.2 Trapping for detection 

Detection trapping is done to determine if a pest is present or absent in an area. For this 
purpose the sampling need not to be completely random and a sequential stratification would be 
applied before a SRS, to increase probability of capture (see section 3.3.1). Traps would usually be 
placed where the highest probability of detecting the insect in question is anticipated. One 
procedure that may be used to increase the likelihood of detection is through identifying risk factors 
(presence of primary hosts, human settlements, human migratory routes, etc.) in a given area and 
assessing the probability for each factor and the overall probability. If this procedure is applied 
systematically in the area of interest (country, region, etc), a mosaic of levels of risk can be plotted 
in a map which can then be used as the basis for establishing a trapping network (Enkerlin et al. 
2012). 

 

The results will be affected by several factors. In addition to placement of the traps, 
mentioned above, the area of attraction of traps is an important consideration. If the pest species has 
a long distance pheromone (e.g. over 500 meters), then  the area of attraction might be many 
hectares; if the species has no long-distance pheromone (e.g. only a few metres), then the area of 
attraction would probably be less than one hectare or a group of trees. The condition of the habitat 
would also affect this; if the area is heavily vegetated, then detection of the traps either visually or 
by odour may be significantly impaired. This will affect the probability of the traps catching insects 
and will therefore also affect the interpretation of the trapping results. 

Trap effectiveness is a third factor of interest that relates to the area of attraction, but more 
specifically refers to the ability of traps to capture insects within their areas of attraction. Trap 
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effectiveness will depend on features of both the traps and the insects themselves. If pheromone can 
be used as an attractant, then the trap effectiveness is usually greatly enhanced. If the habitat is 
relatively open, then visual cues may be very effective. If the prevailing winds are strong, then 
trapping may not yield good results, and rain is also often a deterrent to trapping. Rain affects the 
rate of attractant release by reducing the temperature and increasing relative humidity and also 
physically reduces mobility of insects thus preventing adult flies from encountering traps. 

Finally, trap density will affect the total number of captures. Usually, trap captures will 
increase with trap density up to the point at which the traps start to interfere with each other. If 
pheromone is being used, then there may be an upper limit to the density of trapping that will yield 
good results. Above that density, the pheromone will cause the insects to lose their ability to detect 
the direction of the traps or otherwise interfere with the trapping. If pheromone is not being used 
(e.g. food attractant), then this limiting density is likely to be higher. 

 
4.2.3 The “Fly per Trap per Day” Index 

One measure of success in trapping insects is the number of insects caught each day by each 
trap, on average. This is called “flies per trap per day” (or FTD) in the context of trapping fruit 
flies. It makes no assumptions on trap efficiency or other factors affecting trapping success, except 
that all insects of the target species are equally attracted, and is simply an index of trapping success. 
The FTD is commonly used in fruit fly area-wide integrated control programmes as an operational 
index in multiple ways: 1) As an action threshold for aerial and ground insecticide-bait sprays 
(some programs use a fertile FTD above 0.1) and for release of sterile insects (fertile FTD below 
0.1); 2) to monitor sterile insect temporal and spatial distribution in the field as well as relative 
abundance; 3) to assess required sterile insect density by computing sterile to fertile ratios and 
adjusting sterile fly release densities based on the ratios required to achieve suppression and/or 
eradication (FAO, 2007); and 4) to assess the progress of a program by measuring the relative size 
of the population, as it may be reasonable that an FTD of eight flies per trap represents a population 
twice the size of one that yields four flies per trap, and in that case one can follow the progress of a 
control programme by noting in a time-line the trend of the observed FTD. 

Some care must be used in the interpretation of FTD data if the number of fertile insects is 
small, as sampling error can give very misleading results. If the density of flies is very low, then the 
probabilities of FTD being one or two or three are about the same, but the estimates derived from 
these FTD’s will be very different; the variability of results in determining FTD will be 
considerable, and the variability of the estimates will be even greater. For example, estimates 
derived from numbers such as 1, 2, 4, 2, and 5 will be much more variable that estimates from 
numbers such as 41, 42, 44, 42, and 45. Also, an estimate of population size based on an FTD of 
two would be twice that of an FTD of one, but the difference would probably be simply a result of 
sampling error. It is important also not to include both sexes in a single calculation of FTD. For 
instance, with medfly sexing strains it is possible to produce only males for use in SIT programmes. 
To measure the medfly population we could use two different attractants, trimedlure that attracts 
mostly males (over 99%) and the food attractant biolure which attracts males and females 
(approximately 40 to 60%, respectively). If the male specific trimedlure baited trap is being used to 
compute the FTD to estimate the ratio between the release sterile insects and the wild populations, 
then the FTD is computed separately for the sterile and wild males for the total traps and the sterile 
to wild ratio is then assessed by dividing the FTD´s. However, in the case of traps baited with 
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biolure, it is common to record and count only sterile and wild males to assess the respective FTD´s 
leaving out the wild female counts as no sterile females would be caught in traps. 

The specific case of Medfly is interesting because there are often released sterile males 
involved and multiple lures might be used. Trimedlure captures mostly males, but if traps baited 
with trimedlure are used, they may become completely full of sterile flies and it is difficult to find a 
wild male among such a massive number of sterile males. On the other hand, if a very good female 
attractant that captures 90% females and 10% males existed it would be very useful because low 
numbers of sterile and wild males will be captured with higher number of females. Because it is 
easy to distinguish females from males, and because no sterile females are being released, records 
of females would be very precise. If we assume a sex distribution of 1:1, and a uniform age 
structure, these female records can be used to assess the respective wild male FTD´s. 

 
4.2.4 Fruit sampling 

Fruit sampling involves collecting fruits in those areas where fruit bearing host trees are 
present in the programme’s working area. Fruit sampling can be used to detect the presence or 
absence of fruit flies, to verify the phytosanitary condition of an area as a complement to trapping 
or simply to monitor the population fluctuations, host preference and sequence and relative 
infestation levels. It may or may not be necessary to destroy the fruit in the process of sampling it. 
Fruit may be cut open to count the larval inhabitants or it may be left for few days in holding cages 
to allow larvae to fully develop, leave the fruit and pupate. 

In AW-IPM programmes, as in the case of trapping, initially fruit sampling is usually done 
using simple random sampling when applied for population monitoring and a stratified random 
sampling when applied as a detection tool. Given the amount and diversity of fruit hosts normally 
present in the field, stratification is critical to improve the probability of detecting an immature 
stage of the pest. The factors that are usually considered for stratification include: fruit preference 
(usually efforts are directed towards primary hosts), availability of fruits (fewer fruit present at the 
beginning and at the end of the ripening season), fruit ripeness (unripened and over-ripe fruits are 
discarded), sites with historical profile of pest presence, and fruits with infestation symptoms (e.g. 
oviposition punctures). Fruit samples are collected on a weekly basis. Results are usually compiled 
in the same way as for trapping, presenting the number of larvae/number of fruits of the same host 
or number of larvae/kilogram of the same host as well as, in the case of the need to assess damage 
levels, the number of infested fruits which is transformed into percent infested fruit. 

If there is a strong correlation between infestation and fruits within a tree, only a few 
samples need be taken from each tree. On the other hand, if infestation of fruits are independent of 
each other (both within and among trees), then stratified cluster sampling can be used to advantage, 
as it is easier and will allow a greater sample size for a given amount of expense (see Section 3.1.1). 
This means that a few trees will be intensively sampled, and most trees do not need to be sampled, 
as the few that are sampled will be representative of the rest. 

 
4.2.4.1 The larvae/fruit as an index of population 

There are important differences between using trapping and fruit sampling as a way of 
measuring fruit fly population size. In trapping of adults, it is possible to distinguish between male 
and female, so the index can be sex-related (FTDm or FTDf); in fruit sampling however, inmature 
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insects found cannot easily be separated by sex, so in practice a sex distribution of 1:1 is often 
assumed. 

The movement and changes of the adult populations can be more easily traced by traps, and 
estimates of adult populations based on number of larvae are likely to be less precise than estimates 
based on trap captures. In addition, assessing the size of the population of a pest based on fruit 
sampling requires much more effort per unit than traps, thus, the cost per fruit sample is normally 
substantially greater than the cost per trap. On the other hand, if the objective of fruit sampling is to 
assess presence or absence of the pest (i.e. fruit sampling for detection), then it may be a cost- 
effective tool, especially when stratification is used (see Section 3.3.1 b). 

An additional difference between fruit and trap sampling is that a sampled fruit usually 
contain a certain number of larvae and that number may be stable for several days until they pupate 
and emerge as adults. In the case of the traps, the captures are likely to vary from day to day. 
Additionally, the traps only capture a fraction of all the adults nearby, so the counts from the fruits 
and from the traps cannot be compared, except to say that both are indices of the relative size of the 
wild population, but neither can provide direct estimates of the population size unless  prior 
sampling has established a relationship between the two that can be applied at later dates. Also, if 
males and females are computed separately, then the sex ratio must be known before any 
comparison between the trap counts and the fruit counts can be made. If larvae within a given fruit 
are all or mostly from the eggs of one female, then numbers per infested fruit will not correlate well 
with population size; in that case the number of infested fruits per tree would be a better measure of 
population size. 

 
4.2.5 Converting relative estimates to absolute estimates 

For this conversion we use a statistical technique called least-squares linear regression. This 
is a technique, familiar to most readers, for constructing a relationship (a straight line) between two 
or more variables by minimizing the squares of the deviations between the data and a straight line 
relating the independent (predictor) and dependent (response) variables. It can be done by hand, but 
is best done on a computer using a program such as SPSS, SigmaStat, SAS or R. 

Relative estimates can be converted to absolute estimates by taking subsamples from 
populations at different population densities, computing the relative estimates based on the 
subsamples and simultaneously conducting mark-recapture to obtain estimates of absolute 
population size. A regression is then computed between the relative estimates and the  mark- 
recapture estimates of population size obtained at the same times. With this relationship, one can 
use the relative estimates to get estimates of the absolute population size. As with any 
measurement, the more paired estimates of relative and absolute population sizes generated for a 
given area, the more confidence we can have in the relationship derived by regression. Since the fit 
of data to the straight line is never perfect, and all measures include some error, the estimates one 
gets from this technique are never as good as doing mark-recapture on the whole sample, but it is 
better than simply using the relative estimates. 

An example will illustrate this approach. Consider a population of a defoliating species of 
insect that lays egg masses in the lower branches of trees. The egg masses are easy to count and 
will serve as an index of relative population size. Mark-recapture studies have been done each year 
and  the  collection  of  egg  masses  has  been  done  at  the  same  season  as  the  mark-recapture 
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estimations. The results are presented in Table 4 below. Table 4 contains one estimate of total 
population size and one collection of egg masses for each year. From these data, a regression can 
be calculated. The regression is of the form: 

Nt = a + bNe (37) 
 
where Nt is the number of individuals per ha and Ne is the number of egg masses per ha. The 
parameters a and b are estimated by regression, called the intercept and slope respectively, and they 
turned out to be: a = -7.459, b = 10.057. The equation predicting total numbers is then 

 

Nt = -7.459. + 10.057*Ne (38) 
 
Now one can estimate the total population size by simply counting the total number of egg masses 
and then putting that number into eq. (38). 

When using this method of converting relative to absolute estimates of population size, one 
must be aware that other things besides the egg mass density will affect the total population size, 
and also that the relationship obtained may actually change over time and with differing 
circumstances. This means that the estimates obtained should be treated as tentative. Also, it may 
vary from one location to another, but may be a useful starting point. It helps to have more than one 
relative measure related to the total population size, and then each can serve as a check on the 
others. 

 

In Table 4, the relationship between total population size and egg mass density was linear. 
Other relationships are often found, and it may be useful to include other terms in the regression, 
such as the square of egg mass density and the reciprocal of egg mass density. Adding in both 
these terms would lead to a modified regression equation which would take the form: 

Nt = a + bNe + c Ne
2  + d/Ne (39) 

 
In general squared, reciprocal or other terms would be added through some biological 

consideration. The improvement of the fit of the overall model could be evaluated with an ANOVA 
or by the regression equation itself. For an examination of these issues plus the  question  of 
statistical significance testing any number of introductory statistics text books could be consulted 
such as Sokal and Rohlf (2012). 

 

5. Forecasting populations 
In order to plan for control activities, it is necessary to have some idea of the size of the 

population and also, if possible, whether the population is increasing or decreasing in size. It would 
be useful also to know the spatial distribution of the population. These can be estimated from 
noting the populations found in previous years, but it is especially useful to know the timing of 
events as they occur in the current year, such as the emergence of adults from overwintering pupae 
or the massive dispersal of adult fruit flies after fruit harvest or in response to a prolonged drought. 
The emergence of the first adults after winter can be forecast by knowing the heat requirements of 
the species and using meteorological forecasts of temperatures for the next few weeks. Such 
meteorological forecasts are often not very reliable, but they are usually better than having no 
information. Useful computer based programs to forecast timing and spatial distribution of events 
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based on temperature are available. One frequently used to forecast fruit fly populations is 
CLIMEX and the FAO Locust Watch forecast based on seasonal weather predictions. See 
Appendix 3 for details on these software programmes. 

5.1 Detecting population change 
Mark-recapture.  Mark-recapture analysis can be used to determine whether the wild population 
is increasing, decreasing or staying relatively constant (see section 4.1). In order to separate a trend 
from sampling error and other errors, at least three determinations of population size should be 
made and at time intervals that would allow detectable change to occur between readings. 

Age structure. The age structure of an increasing population will have a preponderance of young 
age classes, whereas a declining population will have mostly older age classes. From life table 
analysis, these characteristics can be assessed and inferences made about the change of the 
population size. 

Indirect indices. Other methods involve sightings of flying insects, resting or mating; number of 
individuals captured trying to obtain a blood meal per night; net sweeps, counting egg masses, fruit 
punctures and evidence of damage to host plants, etc. It is usually useful to use more than one 
method of detection, as often a given method may work well under certain conditions or at certain 
times, and not otherwise. The use of several detection methods usually ensures that the weak areas 
of one method are covered by other methods. 

5.2 Prediction of life history events 
Development in insects is governed by chemical and biochemical processes, and these are 

temperature-dependent. Chemical processes usually occur more quickly at higher temperatures than 
at lower temperatures and the rate of change of the speed of reaction is often nearly a linear 
function of temperature within normally encountered temperature ranges. In species with 
synchronized breeding, or a sharp increase in breeding in response to a seasonal resource suddenly 
becoming available, it is useful to predict when the first larvae will appear, to aid in the timing of 
the use of the appropriate suppression measures (e.g. fruit stripping, release of parasitoids, 
application of bait sprays or residual spraying, etc.); the time  of emergence of adults will  be 
important in the timing of the application of bait sprays or the release of sterile males. In 
continuously breeding species, prediction of developmental events may be of less interest, as 
generations are overlapping and all stages may be present at any one time. 

 
5.2.1 Developmental time for the stages: degree-days 

If early season temperatures are lower than the temperature required for physiological 
development of the overwintering stage, then there will be some threshold (or base) temperature, τ, 
at which development starts. Any temperature above this threshold will allow development to occur 
and the difference between the threshold and the ambient temperature will determine the rate of 
development. This model underpins the most widely used approach to estimating development in 
insects, the thermal accumulation model, which we will refer to here as “Degree days” (for degree- 
day requirements for many insect species see: http://ccesuffolk.org/assets/Horticulture- 
Leaflets/Using-Growing-Degree-Days-for-Insect-Pest-Management.pdf  ). 

Calculation of degree days typically involves calculating the mean temperature, Tm, for each 
day and then adding Tm – τ to a daily running total for the season. Thus a single degree day may be 
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thought of as 24 hours where the temperature is 1 degree above τ. Any days where the 
temperatures are all below the threshold do not contribute to the degree-day total and Tm – τ is taken 
to be zero. From experimental measurements in the laboratory we have estimates of τ and the 
number of degree days required for transitions from each developmental stage for a number of 
economically important species (Magarey et al 2007; Nietshcke et al 2007), so the sum described 
above can continue until enough degree days have accumulated for transformation of individuals 
into another life stage (e.g., eggs hatch into larvae, larvae molt and progress to another instar, etc.). 
If degree-day requirements for development are known, then predictions of the occurrence of each 
life stage can be made by tabulating the daily accumulations of degree-days. It is important to note 
also that the degrees in question may be C or F and also that the time unit does not have to be days; 
in the egg stage of C. capitata, for example, the accumulations are often measured in hours (e.g. 
Duyck and Quilici 2002). 

There are various methods for calculating Tm from daily minimum/maximum temperatures, 
commonly available from meteorological services and weather stations; one of the simplest is given 
by Snyder (1985). If both the maximum and the minimum temperatures for the day are above the 
threshold, then a simple average of the maximum and minimum temperatures for the day can be 
used. If the maximum is above the threshold but the minimum is below the threshold, then the 
method of Baskerville and Emin (1969) would be more appropriate. The temperature curve during 
a 24-hour period can be approximated by a sine curve and this can be used to calculate the mean 
value above the threshold (see also Allen 1976). 

If hourly temperatures are available, then these can be added to get the sum over the 24 hour 
period and divided by 24 to get  Σ (Th – τ) / 24, i.e., the mean hourly temperature contribution to the 
degree-day total, where Th is the temperature at hour h. Thus, if hourly temperatures are available 
and the threshold for development was 8oC, then the degree-day component for the day illustrated 
is calculated as follows. Suppose the hourly temperatures from one o’clock in the morning until 
midnight of the same day are as in Table 5. The degree-day value for that day would be 26/24 = 
1.08. 

 

If hourly measurements are not available and only minimum and maximum temperatures for 
each day are available, then a method similar to that of Baskerville and Emin (1969) can be used 
together with Table A2 to approximate the area under a sine curve that is above the threshold. To 
use Table A2, we need to know three numbers: the minimum, Tmin, and maximum, Tmax, 
temperatures for the day as well as the threshold temperature, Tthr, for development to occur. We 
then calculate 

 
f = (Tthr - Tmin) / (Tmax - Tmin) (40) 

 
and enter Table A2 with it to find p, the proportion of the area below the sine curve and above the 
threshold. Here the maximum is 12o and the minimum is 5o, while the threshold is 8o; thus we 
calculate f = (8 – 5) / (12 – 5) = 0.43. Using Table A2 with f = 0.43, we obtain p = 0.392. We then 
multiply 0.392 by (Tmax - Tmin) / 2. Applying this table to the minimum and maximum in Table 5 
gives degree-days = 0.392 (12 – 5) / 2 = 1.372. This is more than the amount calculated by hourly 
temperatures (1.08), but the numbers shown in Table 5 do not closely follow a sine curve, so that 
the discrepancy is not surprising. In this case the hourly temperatures are the better ones to use, if 
they are available, as they are more accurate than the approximation by a sine curve. 
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A slightly more sophisticated approach to calculating degree-days when only minimum- 
maximum daily temperatures are available for some or all days is to generate estimated hourly 
temperatures using the empirical formulae described by Campbell and Norman (1997): 

 
Γ(t) = 0.44 − 0.46sin(ωt+ 0.9) + 0.11sin(2ωt+ 0.9) (41) 

 
where ω = π/12, and t is time of day in hours, with t = 12 at solar noon. The temperature for any 
time of a day i can be estimated as follows: 

 
T (t) = Tx,i−1Γ(t) + Tn,i[1 − Γ(t)] for 0 < t ≤ 5, 

 
Tx,iΓ(t) + Tn,i[1 − Γ(t)] for 5 < t ≤ 14 (42) 

 
Tx,iΓ(t) + Tn,i+1[1 − Γ(t)] for 14 < t < 24 

 
where Tx is the daily maximum temperature Tn is the daily minimum. 

 
The method above involves using two terms of a Fourier series fitted to a longer term hourly 

average, and is superior to the more commonly used sine method because it does not necessarily 
generate diurnally symmetrical temperature curves. An example of this method in practice for 
studying insect phenology can be seen in Manoukis and Hoffmann (2013); A similar approach, 
validated for use in California, is given in Cesaraccio et al (2001), who also discuss other relevant 
approaches. Additional methods for calculating degree days not discussed here include those in the 
“triangle” method (Lindsay and Newman, 1956) family, outlined in Roltsch et al (1999). 

In terms of forecasting development, precise estimates of the actual degree-day values for 
given days are only possible as the days pass, but if approximate daily temperatures are available in 
weekly forecasts, then some predictions can be made and resources be made available at 
appropriate times for the stages subject to control. It is also common practice to use historical 
average temperatures to forecast the length of development. 

 

As an example, the degree-day requirements for the Mediterranean fruit fly –medfly- 
(Ceratitis capitata) were calculated from times to finish the egg, larval and pupal stages at various 
temperatures given by Shoukry and Hafez (1979). It was found that the degree-day requirements 
were approximately constant over temperatures for thresholds of 10oC for eggs, 6oC for larvae and 
13oC for pupae. Using these thresholds, their medflies had heat requirements for eggs of 32.7 
degree-days, for larvae of 178 degree-days and for pupae of 132 degree-days. In another example, 
in the trilateral Moscamed Programme (USA-Guatemala-Mexico) a degree-days model was used to 
calculate the generation time and number of generations that the medfly can produce based on the 
different climatic zones in Guatemala. Fruit fly outbreak eradication protocols indicate that the time 
required to declare eradication should be equivalent to three biological cycles of the pest (ISPM 
No. 26, FAO 2006). Degree day models are then used to determine the generation time and the total 
time required for completion of three life cycles which will depend on the environmental conditions 
present in the area. 
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5.2.2. Curves of developmental rate vs. temperature 
Another approach is used in a model of tsetse for purposes of assessing the usefulness of 

various control measures and how much of each would be required for eradication (Barclay & 
Vreysen 2011). Instead of degree days, the length of the pupal developmental period and the time 
until first larviposition are estimated from empirical curves. For tsetse, the pupal developmental 
period is given by 

pd = [1.0 + exp(5.4 + 0.25T)] / 0.55 (43) 
 
and the time until first larviposition is given (data from J. Hargrove) by 

 
lt   =  [1.0 + exp(1.63 – 0.063T)] / 0.130 (44) 

 
Functions such as these may be especially useful in cases where the relationships between 
temperature and development are nonlinear. They have to be developed by experimental 
manipulation of temperature, usually in the laboratory. 

 
5.2.3 Population growth 

The extent to which a population exhibits synchronous changes from one stage to another 
probably depends mostly on the extent to which there is a clearly defined inactive period for part of 
the year, and this will be most apparent at high latitudes and least apparent in tropical and 
subtropical latitudes. If breeding is synchronous, then the change from one stage to another (egg 
hatch, pupation, etc.) will be predictable on the basis of degree-day  accumulations  and  these 
changes will be of assistance in planning control operations. If the various stages of the population 
overlap appreciably, then predicting changes of these stages will also overlap and be blurred. 

There are many examples of published models of phenology based on degree days. One of 
these was done by Judd and Gardiner (1997) and is summarized here. Orthosia hibisci is a pest of 
apple and pear trees in British Columbia, Canada. The species has one generation per year and 
overwinter as pupae, emerging as adults in late February or early March. O. hibisci has six larval 
instars and most of the damage to fruit is done by later larval instars. Eggs are laid shortly after 
adult emergence and larvae hatch to coincide with fruit bud development in the fruit trees. This is 
when controls should begin (Table 6). 

Bacillus thuringiensis is used to control O. hibisci to avoid the use of chemical insecticides. 
To maximize the effectiveness of Bt and minimize control costs, the timing of the sprays should be 
as precise as possible. Thus, monitoring the population using sex attractants is advisable in addition 
to the use of degree day models. 

 

In their study, monitoring of adults began in mid-February and continued until June. Traps 
were examined daily. Weather records consisted of hourly measurements of air and soil 
temperatures and a threshold of 3oC was used as the base for physiological development. Daily 
degree-day  summations  were  calculated  by  fitting  a  sine  curve  to  the  hourly  measurements. 
Cumulative percentages of adult emergence, catch and oviposition for each sex were defined using 
degree values. Cumulated degree-days were started after the first adult catch (Biofix) using sex 
attractants, indicating that diapause was then complete. 
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To reach maximal vulnerable O. hibisci and minimize damage to the crop, spraying is 
recommended at the pink stage of development for apples, or 252 degree-days after biofix, to be 
maximally effective; later sprays would allow the L4 and L5 larval instars to inflict damage on the 
crop before the spray occurred. 

 

6. Population and demographic models 
Almost all models of the Sterile Insect Technique (SIT) are population  models,  either 

analytic (with only equations) or computer models (often called numerical models or simulations, 
and in which the relations are governed by algorithms implemented in computer code). Population 
models keep track of population numbers, and include various features that influence population 
size and trend, such as birth rate, mortality, age structure, immigration and emigration, competition, 
etc. 

 

Mathematical models of populations are often posed as difference equations or as 
differential equations. Difference equations are discrete (stepwise, or discontinuous) and use some 
meaningful time step, such as days, years, generations, etc. These are popular with entomologists, 
since many insects breed seasonally, such as most temperate forest insect pests  (bark beetles, 
budworms, tent caterpillars, etc.) Difference equations do not involve calculus, and generally are 
easier for the non-mathematician to understand. Differential equations are continuous; involving 
infinitely small time steps, and are sometimes solvable with calculus. They are useful in species 
that breed continuously within some period of time, such as some fruit flies and mosquitoes. 

Demography is the description and analysis of population quantitative attributes, such as 
growth rate, life expectancy, generation time, population doubling times, age structure, age at first 
reproduction, fertility per female at each age and survivorship at each age. It is applied to human 
populations by sociologists and insurance companies and to animal populations by ecologists. 
Demographic information is usually summarized in life tables, described below. Life tables are a 
very useful encapsulation of the quantitative characteristics of populations determining population 
growth rates and resilience to environmental changes. Demographic models are employed in SIT 
programs with the specific aim of calculating overflooding ratios for releases of sterile insects (see 
chapter 8). 

In this book, models that predict population dynamics will only be explored to illustrate the 
importance of the feature being discussed. Statistical analysis of data will be considered when it is 
useful for predicting control effort or estimating some other relevant quantity, such as the 
derivation of regressions for use in field operations. 

6.1. Population processes 
 

6.1.1. Fertility and fecundity 
Fecundity is the rate of production of eggs per female; fertility is the rate of production of 

eggs that hatch per female. These can be measured in the laboratory, and under ideal conditions for 
the species, maximum rates of fertility and fecundity can be obtained. In the field the rates may be 
lower as a result of poor nutrition, lack of oviposition sites, difficulty in finding mates, harassment 
in dense populations, etc. 
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The fecundity of a female in at least some insect species (e.g., Drosophila melanogaster, 
Chiang and Hodson 1950) is proportional to her weight, and thus size, which in turn is affected by 
temperature, nutrition, crowding, etc. Mean fecundity of a sample may be estimated indirectly by 
measuring a subsample for characters such as wing length, pupal length or overall body length of 
adults as well as egg production, and then forming a regression for egg production  on  these 
secondary characteristics. In addition, indices of fecundity may be calculated by measuring weight 
of egg masses and then regressing the number of eggs that hatch against egg mass weight (see 
section 4.2.5). Recruitment may also be estimated by the Jolly-Seber mark-recapture index (see 
section 4.1.3). 

 
6.1.2 Mortality and survivorship 

These should be determined under field conditions, if possible, as they will likely differ 
considerably from the values obtained in the laboratory. In the laboratory, maximum survivorship 
can be obtained by allowing a female and male to mate and lay eggs and then by regularly counting 
the number of offspring living from that single clutch until all are dead. Survivorship is normally 
determined daily as a proportion of the eggs that were laid and hatched and that were still alive on a 
particular day. Note that survivorship is often estimated by stage. Thus, if 1000 eggs were laid or 
inoculated into growth medium and hatched, then the number surviving to day i divided by 1000 
would be the survivorship to day i. For example, if 1000 eggs were inoculated into growth medium, 
950 of them hatched, and 884 of them were still alive on the tenth day, then the survivorship to day 
10 would be 884/950 = 0.93. Since those that didn’t survive were 950 – 884 = 64, the cumulative 
mortality to day ten was 0.07.  Thus, survivorship equals one minus mortality.  Mortality obtained 
as above is suitable for use in life tables, described in section 6.3. 

Mortality is often obtained by subtracting population estimates for successive population 
stages. This assumes both that the population is stable and that the methods of estimating the 
various stages are equally effective. Cohort measurements are best, as one measures the same 
individuals on successive occasions, but they are seldom feasible in nature as a result of lack of 
identifiability of cohort members and inability to capture them many times. 

Mortality may be caused by weather, starvation, predators and parasites, intraspecific 
competition, human intervention, etc., but for our purposes it is usually just the number dying that 
counts, not the cause of death. Mortality estimates can also be obtained by  mark-recapture 
estimates using the Jolly-Seber index. 

 
6.1.3 Pest dispersal. 

Dispersal is important in pest control because it not only allows insects to move around and 
invade new areas, but also because it exposes the insects to traps and other control measures that 
they might not encounter if they did not move. Dispersal also allows immigrants to enter the 
control area and replenish populations that have been reduced by control measures. 

Dispersal of pests can be assessed by releasing marked insects and estimating dispersal from 
multiple recaptures of the marked insects over various periods of time. This is more likely to yield 
good results if the survivorship of the species is high. If daily survivorship is low (i.e., less than 
80%), then  a large proportion of the population may die before having the opportunity to be 
recaptured. The Jolly-Seber index can be used to estimate dispersal (Chapter 4, section 4.1.3). This 
method requires at least three captures of at least some of the same insects to estimate losses due to 
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deaths and emigration, recruitment due to oviposition and also as a result of immigration and 
dispersal. If it can be done quickly on a long-lived species and if the death rate is low and known 
independently, then any excess losses can be attributed to dispersal. 

Dispersal can be estimated by means of mark-recapture methods involving  releases  of 
marked individuals from a known location and then trapping them at various distances away from 
the release point, typically yielding a recapture curve similar to the one in Fig. 2. In addition, 
multiple recaptures of individually marked insects can be used to estimate mean dispersal distance 
with respect to time between captures. Once the curve has been constructed, estimates of maximal 
dispersal (i.e., when more than 99% have dispersed less than that distance) or mean dispersal per 
unit time can then be made. If samples are taken of a population that is dispersing from a point of 
release, then the mean dispersal distance can be calculated as “the sum of ‘the numbers in each trap 
times the distance from the point of release’ divided by the total sum of trap catches”. Symbolically 
mean distance dispersed equals 

Mean distance dispersed = Σ ni di / Σ ni (45) 

where ni is the number of insects in trap i and di is the distance that trap i is from the point of 
release, and the sum is taken over all the traps being used. Of course, these values will change with 
time. A more sophisticated, although mathematically more difficult, procedure is described below. 

Diffusion equations and random walks can be used to model dispersal. Random walks are 
mathematical models in which something (e.g., an insect) makes a move of a given length in a 
random direction, and then in the next time period makes another move in a different random 
direction, and so on. Diffusion equations are based on random walks. If both the time interval and 
the distance moved decrease towards zero, then in the limiting case this situation is described by 
diffusion equations (Berg 1983). Diffusion equations have one parameter, D, called the diffusion 
coefficient, and its units are squared distance per unit time; this is not easily interpretable, but can 
be measured as 

D = (Σ(N) 
di

2 / N) / 2t (46) 
 
for movement in one dimension or 

 
D = (Σ(N) 

di
2 / N) / 4t (47) 

 
in two dimensions, in which di is the distance that the ith insect has gone in a given time, t, and  N 
is the number of insects in the sample, and the summation is taken over the N insects.  If we define 
d

2 = (Σ(N) 
di

2 / N) to be the mean square distance covered by the insects, then √(Σ(N) 
di

2 / N) will be 
the ‘root mean square distance’, and it represents the mean net linear distance between the starting 
point and the end point. Diffusion equations predict that spread will slow down as time and 
distance proceed because the insects don’t all move in one direction and movement is random. This 
can be seen by solving for root mean square distance: 

√(Σ(N) 
di

2 / N) = √4Dt (48) 
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so that the mean net linear distance traveled is proportional to the square root of time. Thus, the 
distance gone in ten seconds will be √10 (= 3.162) times the distance gone in one second. 

Dispersal equations were originally developed to describe the diffusion of heat along a 
metal rod. They were first applied to animal dispersal by Skellam (1951) and found to fit data well. 
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Figure 2. Typical curves of trap catches resulting from release of insects at point 0 at a given time. 
Over time the curves flatten out as the insects disperse outward from the release point. 

 

Berg (1983) gives an example of a small molecule diffusing through water at room 
temperature. It has a diffusion coefficient of D = 10-5 square cm per second and can diffuse about 
10-4 cm in about half a millisecond. If distance were a linear function of time, then a diffusion 
distance of one cm would take about five seconds. However, it would take about 14 hours to 
diffuse one cm based on the relationship shown above, and this has been demonstrated 
experimentally to be the case. 

 
The units of distance and time can be chosen to suit the purpose. In dealing with dispersing 

insects, we might want to use distance in metres and time in days; of course, the choice of units will 
affect the size of D that is estimated from the data. For example, Table 7 shows a frequency 
distribution of distances dispersed, to the nearest metre, by a hypothetical slow moving insect in 
nine days from a release point. We can estimate D by means of the equation given above: D = (Σ(N) 

di
2 / N) / 4t. This is for two dimensions, so that the distances are all in different directions from the 

central release point, but direction is not considered in the estimation. The total number of insects 
observed was 68, the sum of d2

i was 
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Σ d2

i = 0 + 16 + 56 + … + 81 + 0 = 686 and the time was nine days, so D = (686/68)/36 = 0.280. 
This can be taken as an estimate of the true value of dispersal for the species, for that location, 
season and weather conditions. 

 

Once one has an estimate of the diffusion coefficient, D, one can invert the formula and 
estimate the time it will take for the average dispersal to get to a given distance or the mean 
distance dispersed in a given time. Thus 

t = (Σ(N) 
di

2 / N) / 4D  or  Σ(N) 
di

2 / N = 4Dt (49) 

Bouyer et al. (2007) have estimated the parameter D for tsetse to be 0.29 square km per day, so that 
the mean square distance gone in t days will be 4Dt = 1.16t 

 

The solution to the two-dimensional diffusion equation is a bivariate normal distribution 
with a variance of 4Dt, and so the standard deviation is 2√Dt (Edelstein-Keshet 1988). Then using 
the rule that 95% of the probability is contained within two standard deviations from the mean, we 
can assert  that from any location  containing dispersing insects,  about 5% will  have dispersed 
farther than a distance 4√Dt from the given location in time t. This gives a measure of the distance 
moved by most of the population in a given amount of time. Using three standard deviations, we 
can state that only about 1% of the insects will have moved a distance more than 6√Dt from the 
starting point in time t. For most insects, it seems appropriate to measure time in days and distance 
in metres, although some quickly dispersing insects may move more than one kilometer in a day. 
Thus, using Bouyer’s estimate of dispersal for tsetse, it may be stated that only about 1% of mobile 
tsetse will move a distance greater than 3(√1.16) km per day, or 3.23 km per day. 

 
6.1.4 Correlated Random Walks 

Though the simple 2D diffusion model discussed above is well understood and has been 
extensively used in general ecological models of movement (Okubo 1980) and insect movement 
studies (Rudd and Gandour 1985), it does not have a high degree of realism relative to how insects 
actually  move  in  nature.  In  particular,  the  assumption  of  a  uniform  distribution  of  angles  of 
movement,  180o   in  each  direction,  and  that  individuals  may  turn  at  each  time  step  is  quite 
unrealistic for most insects. Since any deviation from this assumption will  increase  the  mean 
distance travelled from the starting  point over  time  it is probably best to consider  simple 2D 
diffusion as a model for the minimum movement of a group of insects. 

A more realistic movement model is a correlated random walk (Kitching 1971; Byers 1991, 
2001) where the turning angles are not uniformly distributed, resulting in more directed movement. 
Unfortunately this sort of movement model is more complicated than simple diffusion (Patlak 
1953; Turchin 1991). One of the most usable set of equations for calculating distance moved (mean 
squared distance) based on move length, turning angle distributions and total number of moves is as 
follows (Kareiva and Shigesada 1983): 

 

 

E(R2) = nE(l2) + 2E(l)2  c
 
 n - 

 -c 

n 

  (50) 
 
and 

 -c  -c 
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c = E(cos 8) = 
rr  

cos 8 g(8)d8 
-rr 

 
(51) 

where l is the step size, n is the number of steps, c is the mean of the cosines of all possible turning 
angles (radians) from a specific random distribution g(θ), which may be Gaussian or any other 
distribution. This simplified form assumes equal probabilities of left and right turns, so that g(θ) is 
symmetric around θ=1. If we assume a constant step size, E(L

2
) = L2. Following Figure shows 

examples of correlated random walks with three distributions of turning angles. These are examples 
of 200-step paths generated with three values of the standard deviation σ of the distribution of turn 
angles between successive steps, shown above the paths. P=L=length of a step. Reproduced with 
permission from Bovet and Benhamou (1988). 

 
 
 

 
 

The square root of E(R
2
) is approximately the mean distance travelled, though a correction 

factor of 0.89 is helpful for many cases (Byers 2001). Byers (2001) gives correction factors for a 
variety of movement parameters, interested readers should consult that paper for details. 

 
 

6.2 Features of population models 
 

6.2.1 Population growth 
The simplest kind of population growth is geometric growth for a species with non- 

overlapping generations, and its continuous counterpart, exponential growth. A simple modification 
to these models, to include resource limitation, puts an upper limit on growth. Many formulations 
exist for limiting geometric growth (i.e., density-dependent population regulation); a few were 
provided by Hassell (1978). This small complication makes some of the models insoluble 
analytically, and it is a common feature of population models that non-linearities often render the 
models insoluble analytically; it is then necessary to resort to numerical solutions using a computer. 
Within reasonable limits, discrete and continuous models give similar results. Generally discrete 
models are easier to use and are favoured by most entomologists. 

The geometric model is 
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Nt+1=λNt (52) 

Here Nt is the size of the population at time t, where t is scaled to generations and λ is the rate of 
increase each generation. In each generation the population size is λ times the size it was in the 
previous generation. In this model generations are discrete and non-overlapping. This model is easy 
to solve. At any time t, 

Nt =N0λ
t (53) 

where N0 is the size of the population at time t=0. 

The continuous counterpart of the geometric model is the exponential growth model and it 
is 

dN/dt=rN (54) 
 

The solution to this model is 
 

N=N0 exp (rt) (55) 

where exp(rt) = e
rt
, e is the base of natural logarithms, r is the instantaneous rate of growth, and N0 

is the initial size of the population at time zero. The relationship between r and λ is that 

r = ln(λ) (56) 

where ln stands for the natural logarithm. 

Another important simple method for modeling population growth is to include density 
dependence. With density-dependence, the geometric model  becomes  Nt+1=λNt  exp(-gNt  ),  in 
which the exponential term has no real biological meaning, and is simply a convenient device to 
limit population numbers. The continuous version is the  logistic  equation:  dN/dt=rN(K–N)/K, 
where K is the carrying capacity, imposed by resource limitation. In both cases, control using SIT 
becomes easier with density dependence because density-dependence imposes extra mortality and 
thus assists the SIT in its depressive action. The amount of this assistance will depend on the 
mechanism of density-dependent population regulation, and that varies from one species to another 
and may or may not be properly described by any of the mathematical formulations of density- 
dependence presently in use. 

 
6.2.2 Overlapping or non-overlapping generations 

Some models have a time step of one generation (usually one year) and if the individuals 
only live for one generation, then generations do not overlap. These models are simple and often 
easily analyzed. If the time step is less than one generation (e.g., one day or one week), then more 
equations are required to represent the various stages. These models will be better suited for species 
such as many fruit flies in which oviposition and mortality occur over lengthy periods of time. In 
continuous models, generations necessarily overlap. However, when realism is a modeling goal, 
the resulting equations can be sufficiently complicated such that they become cumbersome and 
hard to analyze. All the standard population models are compromises between realism and ease of 
analysis. 
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6.2.3 Age-Specific mortality and fecundity 
If we have information on the sizes of the population components at various ages or stages, 

we can construct an age-structured model. Thus, in a single cohort, the egg stages are the most 
numerous, then the larval stages, then the pupal stages, and the adult stages are the least numerous. 
This order may not be preserved if the population consists of many cohorts. With discrete models it 
is easy to incorporate age structure into the model. For this we need more than one equation. We 
could, for example, have one equation for each day of life of the insect, from egg through adult to 
senescence. If most of the stages are density-independent, then the model may still be solvable 
analytically. If many stages have density-dependent regulation, then the solution of the equations 
may have to rely on numerical integration with a computer. 

An example of an age-structured model that is tabulated on a daily basis and is completely 
density-independent is the following. Here E stands for egg, L stands for larva, P for pupa, and F 
for fertile female adult. The subscripts are to denote age and time; thus E2,t represents the number 
of eggs that are 2 days old at time t, while F10,t+1 represents the number of adult females at time t+1 
that emerged ten days before (i.e., they are ten days old). In this model, mx stands for fertility per 
female; only females are tabulated and it is assumed that all ages of adult females lay the same 
number of fertile eggs per day.  The symbol ∑ means the sum over all values of the counter i. Thus, 
∑ Fi,t mx = F1,t mx + F2,t mx + … + FM,t mx , where EM1,t LM2,t PM3,t and FM4,t  are the oldest age 
classes of eggs, larvae, pupae, and adults present respectively and the values of M1, M2, etc. will 
probably depend on temperature, nutrition, etc. Thus, the first age class for eggs results from the 
fertility of all the adult female age classes, whereas subsequent age classes result from survivorship 
from previous ages. 

 
E1,t=1  =  ∑ Fi,t mx 

E2,t+1  =  E1,t 

E3,t+1 =  E2,t (57) 
. 
. 
. 

EM1,t+1 = EM1-1,t 

 
L1,t+1  = EM1,t 

L2,t+1  = q L1,t 

L3,t+1 = q L2,t (58) 
. 
. 
. 

LM2,t+1 = q LM2-1,t 

 
P1,t+1  = q LM2,t 

P2,t+1  = w P1,t 

P3,t+1 =  w P2,t (59) 
. 
. 
. 

PM3,t+1 = w PM3-1,t 
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F1,t+1  = w PM3,t 

F2,t+1  = s F1,t 

F3,t+1 = s F2,t (60) 
. 
. 
. 

FM4,t+1 = s FM4-1,t 

 

Here q, w and s are the daily survivorships of the larvae, pupae and adults respectively. The biggest 
problem in understanding this kind of model is often just being clear about the counters 
(subscripts). This model does not represent one cohort, but rather a population with overlapping age 
classes, so that all age classes may be represented in the population at any given time. It could 
represent a cohort if the time counter progressed by one at each successive age. Such a model has 
no equilibrium, as it has no limitation imposed on it by density-dependence. It is quite useful in 
forming part of a model of SIT, and in that context it does have an equilibrium, although the 
equilibrium is unstable. However, even though the equilibrium is unstable, it is useful in defining 
the critical sterile release rate required for or eradication (the critical release rate represents the 
release rate that separates success from failure of the control programme. 

A formalized structure for analyzing population growth involving age structure is the life 
table (developed below), which allows the calculation of various statistics, such as the net 
reproductive rate, life expectancy, mean age-dependent fertility and generation time, all calculated 
from the age-dependent fertilities and survivorships. Life tables are useful in cases where  the 
populations exist with generations overlapping. Species with synchronous reproduction and which 
do not survive beyond one generation are usually easy to analyze without the use of life tables, but 
many pest species exist in nature with overlapping generations, such as fruit flies, mosquitoes, and 
tsetse flies. 

In addition to life tables, Leslie matrices are useful for projecting the demographics of a 
structured population (i.e. where we do not treat all individuals identically with respect to 
reproduction and mortality). 

6.3 Demographic models 
 

6.3.1 Leslie Matrix Models 
As we have seen above, the exponential model of population growth above (Nt+1=λNt) and 

the logistic version (Nt+1=λNt exp(-gNt )) are very useful, but both treat all individuals in the 
population identically. In insect populations, however, individuals are not equivalent: immature 
individuals don’t reproduce, young adults may not be sexually mature and very old females may 
become reproductively senescent. In addition to reproductive differences, different stages and age 
classes may have varying survival per unit time. 

Basic linear algebra and matrix operations make it relatively simple to model a structured 
population. These tools allow us to keep track of different classes of individuals over time. Below 
is an example, adapted and extended from Allman and Rhodes (2004): 

Consider an insect with three life stages: egg, larva and adult. These insects progress from 
one stage to the next in one step, and adults lay eggs and die in one step also (a time step may be a 
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day, a week or any other amount of time). Et is the number of eggs at time t, Lt is the number of 
larvae at time t and At is the number of adults at time t. If eggs have a 4% probability of surviving to 
be larvae, larvae have a 39% probability of becoming adults and adults on average produce 73 eggs 
each we can write: 

 

Et+   = 73At 

Lt+   = 0.04Et (61) 
At+  = 0.39Lt 

These three difference equations can model our age structured population given three initial values: 
E0, L0 and A0. 

This population could also be modeled by At+3 = (0.39)(0.04)(73)At = 1.1388At. Since 
this simple exponential model also describes the population, we already can see that the population 
will grow, with λ = 1.1388. However, we want to keep track of our three stages, and perhaps also 
track changes per single time step; for that, we might use the following formulation: 

0 0 73 Et Et+  

 0.04 0 0       Lt     =   Lt+ (62) 
0 0.39 0 At At+  

The model above is commonly written as Axt = xt+ . The particular form used is a Leslie matrix 
(Leslie, 1945), widely used in demographic and population studies. It may also be referred to as a 
projection matrix, because it represents the mortality and fecundity of the various classes in the 
population in such a way that it allows us to project how the population will change from one time 
step to the next. 

 

Leslie matrices have the fecundities of the age classes (and/or stages) along the top row, 
with survivorships in the first sub diagonal. Iteratively multiplying such a matrix by a column 
vector (x) of the number of individuals in each age class or stage will allow us to project the 
population changes for a single time step. So, using the example above and assuming E0 = 1000, L0 

= 20 and A0 = 5 we can calculate x1: 
 

0 0 73 1000 (0)(1000) + (0)(20) + (73)(5) 365 

 0.04 0 0         20   =  (0.04)(1000) + (0)(20) + (0)(5)  =   40   (63) 
0 0.39 0 5 (0)(1000) + (0.39)(20) + (0)(5) 7.8 

 

We can iterate two more times, to get x2 and x3: 

0 0 73 365 569.4 

x  =   0.04 0 0       40    =    14.6 (64) 
0 0.39 0 7.8 15.6 

 

 

0 0 73 569.4 1138.8 

x2 =  0.04 0 0      14.6    =   22.8   (65) 
0 0.39 0 15.6 15.6 
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Note that the final size of the population (sum across classes) is ~1167.3; this is 1.1388 times the 
starting size of 1025, as expected at x2. It is also interesting to note that the population size initially 
drops, due to the extreme non-equilibrium of the number of individuals in each age-class. 

 

For more examples and details on Leslie matrices and other projection matricies consult 
Allman and Rhodes (2004) or Roughgarden (1998). 

 
6.3.2 Life Tables 

Life tables come in two varieties, horizontal and vertical, and they tabulate the age structure 
and reproduction of the population from oviposition (or sometimes the emergence of the adults) 
until the oldest member of the population has died. Horizontal life tables are constructed  by 
following a real cohort (i.e., a group of individuals all of the same age) from the egg stage until the 
last adult has died, and tabulating the size of the age classes as time proceeds. The natural decrease 
in size of the population as time progresses is a result of deaths of individuals; this process assumes 
that immigration and emigration do not occur, and it is often carried out in the laboratory under 
nearly ideal conditions, although it can be made more representative of natural field conditions if it 
can be determined under at least semi-natural conditions, such as outdoor caged populations. The 
vertical life table is constructed by sampling all stages of a continuously reproducing population at 
one moment in time, and assuming that the population is relatively constant and thus the sampling 
represents the correct relative sizes of the different ages of the population. Here we will  be 
concerned only with horizontal (cohort) life tables. 

 
6.3.3 Procedures for construction of Life Tables 

We will assume initially that the time interval for tabulation of population numbers is one 
day. Thus the eggs are laid on day zero. For the sake of clarity we also assume that one hundred 
eggs are laid. The proportion (not percentage) of individuals still alive at time x days after 
oviposition is called lx, and is the survivorship to age x. The age specific fecundity, mx, is the 
number of fertile female eggs laid by females between the ages x and x+1, hx, is the proportion of 
eggs that hatch, and the number of viable eggs is thus the number of eggs laid times the proportion 
of eggs that hatch; these numbers are not made into percentages. We can now calculate the mean 
daily fertility as: 

 

µ = Σ lx hx mx / Σ lx (66) 

over all adult age classes. This is illustrated below using data on the medfly, abstracted from a 
paper by Vargas et al. (1984). 

In a laboratory study of cohort development of three tephritid species, Vargas et al. (1984) 
determined that the total pre-adult mortality of eggs, larvae and pupae of C. capitata was 31% (γ 
=le = 0.69; le = pre-adult survivorship at adult emergence). The lengths of the egg, larval and pupal 
stages were about 2.3, 7.2 and 9.5 days long, respectively totalling about 19 days. In addition, the 
authors gave a survivorship curve from day 1 (oviposition) to about day 95, when only about 1% of 
the cohort remained. The greatest daily mortality was in the larval stage, followed by senescent 
adults after day 70. Fecundity and egg hatchability curves were also given from day 22, when the 
first oviposition occurred by mated adults, until day 95, by which time oviposition had virtually 
ceased. We have computed the mean daily fertility (mdf) in which the sum is taken over all 
ovipositing ages of adults, and lx, mx  are, respectively, the female survivorship to age class x, and 
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the fertility of age-class-x adults; the value obtained for mdf was 8.14. From the graph presented by 
Vargas et al. (1984), the period between adult female emergence and the onset of oviposition was 
about three days. 

The values of survivorship and fertility that we used were taken from graphs given by 
Vargas et al. (1984), and were thus already a little inaccurate; also the graphs of fertility were 
drawn from weekly averages, and thus the time step is weekly, rather than daily as used above. 
Also, the values differ considerably from those presented by Carey (1982), and thus should not be 
used without verifying that they represent any given local medfly population considered for control. 
The data from Vargas et al. (1984) were obtained from a laboratory study that underestimates the 
mortality occurring under natural conditions as a result of there being fewer mortality factors in the 
laboratory. In addition, while under natural conditions protein sources are very limited, females had 
unlimited access in the laboratory to high quality food, allowing them to maximize their potential 
fecundity. 

The parameters derived from demographic analyses such as the one described above will be 
useful in constructing growth models as well as in calculating the overflooding ratio in SIT 
programmes (see chapters 7 and 8 below). 

 
 

7. Models of SIT 
7.1 Models of population dynamics using SIT 

 

7.1.1 Knipling’s original model 
Knipling produced a simple numerical model (Knipling 1955) that foreshadowed all future 

SIT modelling developments (Knipling 1979). The central feature of Knipling’s model, and one 
found in almost all subsequent models, is the ratio of fertile males to all males in the population: 
(M/(S+M)) where M is the number of fertile males (or females, assuming a 1:1 sex ratio) and S is 
the number of sterile males. This gives the proportion of the population, under ideal conditions, that 
produces fertile eggs as a result of some fertile females mating with fertile males (see also IAEA 
1973). Knipling’s (1955) model for the release of sterile insects (eq. (1)) was a simple modification 
of the geometric model for species with non-overlapping generations, using the fertility factor 
above,  Ft+1=λFt (Mt / (S+Mt)),  where Ft and Mt are the numbers of fertile females and fertile males 
at time t, λ is the rate of increase per generation, and S is the number of sterile males released each 
generation. This yields a stable steady state at F=0 (when S > 0) and an unstable positive steady 
state for F when S=S*, the critical release rate, the threshold that will allow eradication if S > S*. 
The value of this critical release rate (S*) is found by assuming that the population is being held at 
steady state by the sterile males, and so one can drop subscripts, because at steady state Ft = Ft+1. 
Rearranging algebraically and solving for S, this gives 

S* = (λ-1)M (67) 
 
the value of sterile release rate that holds the population at the steady state (Knipling 1955). If 
S>S*, then the pest population will collapse and be eliminated (Table 8). If S < S*, then the 
population in this model will increase indefinitely. 
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The required overflooding ratio for eradication (here called φ) is: φ = S / M = λ-1 for this 
simple model with non-overlapping generations. For example, if the rate of increase per generation 
is 16 (so that if there are 100 insects this generation, then there will be 1600 the next generation), 
and if there are 50 wild males (M), then the required overflooding ratio will be φ = S/M = 15; i.e. 
S* = 750. In this case, the over-flooding ratio and the release ratio are the same. When dealing with 
populations with age structure and which overlap, these two ratios are not the same (see section 
7.1.8 below). 

 
7.1.2 Population aggregation 

In nature most populations are not dispersed evenly over the available habitat. Some 
biological characteristics, such as territoriality, result in dispersion patterns that are more regular 
than one would expect of a random spatial distribution. However, most real populations will tend to 
have a somewhat aggregated (clumped) dispersion pattern. Aggregation is one of the most difficult 
patterns to deal with in using sterile insect releases, as one has to know where the clumps are 
located. 

The most common distribution to quantify aggregation is  the  Negative  Binomial 
Distribution in which the parameter k measures clumping (see Negative Binomial Distribution, 
chapter 3). If aggregation is extreme, then k is close to zero; as k becomes very large, the dispersion 
approaches a random pattern. Another approach uses 1/k, which increases with the degree of 
clumping. Barclay (1992) used the Negative Binomial Distribution to derive required sterile insect 
release rates of an aggregated population as a function of the clumping parameter, k. For 
moderately aggregated populations (k=0.25), it was found that the required release rate was about 
four times that for a uniformly dispersed population. Shiga (1986) analysed spatial distributions in 
the context of fruit fly eradication using male annihilation and the SIT and suggested that the 
release rate could be locally adjusted to the fly density in each local area. 

Many aspects of aggregation involve behavioural components. Horng and Plant (1992) 
modelled the impact of lek mating on SIT. They found that the sterility effect, presence or absence 
of female mate-choice, and sterile-male mating competitiveness were the most important factors in 
their model in determining the success of an SIT programme. In addition, Vreysen et al. (2006) 
extended the model of Horng and Plant and found that in a male choice mating system (e.g., 
screwworms), mating with sterile females required a doubling of the number of sterile males 
compared with male-only releases to overcome the discrimination of wild males against sterile 
females, if they were also released. The model on female choice could not distinguish between 
reduced sterile male competitiveness and female preference for wild males and implied that the 
release of both sexes and male-only releases required the same sterile to wild male overflooding 
ratio. 

In making allowance for the effects of aggregation on the required release rate, the results of 
trapping can be useful. If we can calculate the highest density of insects found and also the mean 
density, then the release rate should be adjusted upwards from what the Knipling model predicts by 
the ratio: “highest density/mean density”. 

 
7.1.3 Polygamy vs monogamy 

Another question asked is, “Does it matter if the females of the target species in a sterile 
release programme mate only once or more than once?” The answer appears to be that female 
remating (polyandry) is quite compatible with SIT, as long as mating is random, with sterilized 
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males being fully competitive. Also, in polygamous species, it doesn’t matter whether sperm is 
diluted, replaced or excluded after the first mating, again as long as mating is random, and sterile 
males are fully competitive. However, if steriles are not fully competitive, then polygamy is 
disadvantageous to an SIT programme. Polygyny in males is of little concern. For example, in 
tephritid flies, polygyny is more evident than polyandry.  Males can mate repeatedly,  whereas 
females usually only remate if the sperm load in the female is low. 

 
7.1.4 Release of males-only vs both sexes 

It was initially thought that the release of sterile females would be counterproductive. This 
question was addressed early on by Ailam and Galun (1967) and by Lawson (1967). Using 
probabilistic models of mating, they found that the release of sterile females is never detrimental 
(assuming they are all fully sterile), and in fact may assist the control programme if males are 
limited in their mating ability, in which case some fertile females might not get mated. However, 
field entomologists continue to be skeptical about this, and Rendon, et al. (2004) have shown that 
the required overflooding ratio could be much lower when releasing only males than  when 
releasing both sexes, as the sterile males became more competitive when released alone. 
Additionally, there are savings on transporting, packing, holding and release costs if only one sex is 
reared, so it would seem that the release of only males is in general preferable to the release of both 
sexes. If the females transmit animal or human diseases, release of only males is a must. 

 
7.1.5 Residual fertility of released males and females 

If some of the treated insects are not completely sterilized, then the situation becomes more 
complicated. Klassen and Creech (1971) constructed a numerical model in which a certain 
proportion of the released males remained fertile. They found an upper limit to this ‘residual 
fertility’ that was compatible with the success of the release programme. Their model can be put 
into algebraic form and generalized. 

When there is incomplete sterilization of the released insects, a fraction, q, of males remains 
fertile. In that case, Knipling’s model can be modified, and it becomes: 

Ft+1=λFt(Mt+qS)/(Mt+S) (68) 

In equation 68, it is assumed that either only males (Mt) are released or that released females are 
completely sterile and only males display residual fertility; this conforms to the usual reality, as 
females are usually easier to completely sterilize than males. This model has a stable steady state at 
F=M=0, and an unstable positive steady state for F and M when S=S*, the critical release rate, 
where S*=M(λ-1)/(1-λq). Here, S* is only finite for q<1/λ. If q>1/λ, then the population is not 
readily controllable by sterile releases. Thus, for example, if the rate of increase, λ, is 10, then q 

must be less than 0.1, i.e. the released males must be greater than 90% sterile in order for control by 
the SIT to be possible. Also, if the residual fertility is more than about three-fourths of the limiting 
value, then the required rate of sterile releases is much higher than with complete sterility (Barclay 
2001). 

 

If both males and females are released and neither sex is completely  sterile,  then  the 
situation is even worse. If residual fertility exists in both  sexes following release, it becomes 
impossible to eliminate the pest population by sterile releases alone; the best that can be done is to 



45  

 
 

suppress it to a low level with continuing sterile releases. If the objective of a program is to 
eradicate a population, residual fertility above the limiting value becomes a constraint. 

 
7.1.6 Sterile male competitive ability 

The ability of sterile males to compete with wild males for mates might be affected by 
sterilization through the debilitating effects on sperm competition or longevity, flight ability and 
mating behaviour of the adults. Models show that the critical release rate increases as the 
competitive ability of sterilized insects decreases (Barclay 2005). 

We define c as a coefficient of competitive ability of sterile males, with 0 being completely 
non-competitive and 1 being fully competitive with fully fertile wild males. Then the population 
equilibrium is 

Ft+1 =λ Ft (Ft / (Ft+cS)) (69) 

This model has a stable steady state at F=M=0 when S>0. The positive (unstable) steady state for 
F occurs when S=S*, the critical value, where S*=(λ-1)F/c, which is greater than (λ-1)F, with full 
competitive ability. In addition, the overflooding ratio will be S* / M > (λ-1) / c 

 

7.1.7 Immigration 
We assume that I males and I females immigrate each generation prior to mating. The female 

immigrants are thus available for mating with the released sterile males as well as the wild males, 
and the male immigrants can compete with the sterile males. The equation is: 

Ft+1 =λ(Ft+ I)(Ft+I) / (Ft+I+S)) (70) 

This model has two positive roots for F, with the upper one being unstable (the population as it 
existed just prior to sterile releases) and the lower one being stable (Prout 1978). This lower steady 
state represents a population in a state of collapse due to sterile releases, but which is replenished 
each generation by immigrants. Note that zero is not a steady state solution here. The required 
sterile release rate grows rapidly with I, but there is no value of immigration that disallows some 
control by sterile releases; only eradication is impossible. The values of S* depend only modestly 
on I, if the immigration rate each generation is only a small proportion of the total population. 

If immigration is after mating, then the equation becomes 

Ft+1 =λFt
2 

/ (Ft+S) + λI (71) 

This model also has two positive roots, and zero is not a root. Thus, replenishment occurs if the 
population is reduced to zero by control. 

 
7.1.8 Age Structure 

The existence of two or more life stages of a species complicates the dynamic responses of a 
population to mortality factors, especially if the two stages are ecologically different, as they are in 
fruit flies and other pest species in which the two active stages occupy different habitats. 

Age structure can also be modelled as in chapter 6, and in that case, the first egg equation 
becomes: 
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E1,t=1  =  ∑ Fi,t mx  (∑ Fi / (∑ Fi + N)) (72) 

with all the other equations remaining the same; in this case the sum is taken over all age classes of 
adult females, and N is the number of sterile males in the population, and we assume that the 
number of wild males equals the number of wild females. The equilibrium can then be found by 
dropping the time subscript and solving the equations. This is not as big a job as it appears, though, 
and the main problem is in knowing the value of N, as it will not be equal to the numbers of sterile 
males released at each release date. The problem of estimating N is dealt with in Chapter 8. At 
equilibrium, by definition, nothing changes from one time step to the next, so that Ei,t+1 = Ei,t, and 
so on for the other age classes and life stages, so that we can simply write Ei instead of Ei,t, and so 
on for the other ages and life stages. 

 

We can define two quantities that will allow us to construct an age structured  model 
including the action of sterile males. The total pre-adult survivorship can be assigned to a variable γ 

that is the product of all the pre-adult survivorships, so that γ = (Π(kp) 
wi) (Π(kl) 

qi) . In addition, the 
mean fertile eggs per fly-day is defined as µ = Σ mx hx lx / Σ lx.  We include here a delay in mating 
of females of τ days as a result of required maturation. We then obtain (see Appendix 1, as well as 
Barclay et al. 2014) 

r* = γµFT [γµ (s)τ – (1 – s)] / (1 – s) (73) 

where s is the daily survivorship of adults, and is here assumed to be independent of age. 
 

In addition it may be the case that sterile males may not survive as well as wild males, and 
thus the survivorship factor, s, will need to be adjusted for the steriles. If sterile males survive at a 
rate u per day, then the size of the sterile population after n releases will be N = r / (1-u). One more 
feature needs to be considered: upon starting to release sterile males, the sterile population starts at 
zero and builds up with each successive release until an approximate equilibrium is reached. This 
will take some time, and the wild population may still be growing in the meantime. The easiest way 
of addressing this problem is to make the first few sterile releases much larger than the value of r 

which will keep the sterile population at the required level for eradication. Two examples will 
illustrate the results of the model. 

 
The first example is taken from a model of tsetse that was published  by  Barclay  and 

Vreysen (2011). In that model, both pupal and adult survivorships were assumed to be constant for 
all ages. Daily pupal survival was 0.99, adult female daily survival was 0.99, wild adult male daily 
survival was 0.98 and sterile adult male daily survival was 0.92. Also, fertility was temperature 
dependent, but not age-dependent; at 27 oC the fertility was one pupa produced every 9 days 
starting at day 17 after adult emergence. The length of the pupal developmental period at 27 oC was 
27 days. Thus after an extended period of sterile releases, the equilibrium sterile male population 
will be 

 

N = r / (1-u) (74) 
 

= r / (1-0.92) = r / 0.08 = 12.5 r. Also, 

r = γµFT (1-u) [γµ (s)τ – (1 – s)] / (1 – s)2. (75) 
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Here (s)τ can be taken as 0.9917 = 0.84 and γ = 0.9927 = 0.8. The potential fertility rate, µ, is 
1/9 = 0.111 pupae per day.  Thus, r = 0.84(0.111) [(0.84) (0.111)(0.8) – (1-0.98))] FT / (1 – 0.98) = 
(0.093)[(0.0746 – 0.02)] / 0.02 FT = 0.254 FT and the release ratio is r/FT = 0.254. Note that r/FT is 
the release ratio, not the overflooding ratio of the population, which would be N/FT. In a 
continuously breeding species, the sterile releases will add to an existing population of sterile 
males, so that r (release rate) and N (sterile population size) are quite different; N/FT will represent 
the overflooding ratio comparable to that implied in Knipling’s models. In this example, N = 12.5 r, 
so that the overflooding ratio would be 12.5 (0.254) = 3.17 

 

The second example is from the Bactrocera dorsalis data provided by Vargas et al. (1984). 
The survivorship and fertility curves for oriental fruit fly were not constant over adult ages, but 
started low and then peaked at an early adult age and then declined towards zero near the end of 
their natural lifespan. The mean fertility per fly-day was µ = 8.76 eggs per adult female. Pre-adult 
survivorship was 0.63 and the period from oviposition to adult emergence was about 19 days. Thus, 
γ = 0.63. Also, (s)τ = 0.81 and we take s as being 0.97 per day on average. Thus in the equation r = 
γµFT [γµ (s)τ – (1 – s)] / (1 – s) we make the substitutions and obtain r = (0.63) (8.76) [(0.63) (8.76) 
(0.81) – 0.03] FT / 0.03 = 817 FT (see Appendix 1 below). There is no information in Vargas et al. 
(1984) about sterile male characteristics, so we assume in this example that steriles survive at the 
same rate as fertiles. 

 
7.1.9 Effect of interval between sterile releases 

 

 

A large part of the cost of the sterile insect technique is the cost of aerial releases. This results in an 
interval between releases of at least several days; weekly releases are typical. This means that 
mortality of sterile males occurs between releases and reduces the ambient level of the sterile males 
in the population. Figures 3 and 4 show the effects of releases (i) every day, (ii) every four days, 
and (iii) once a week. The daily releases are represented by a horizontal line at the top. Actually, 
the line should be saw-tooth in shape, but the measurements in the figure are assumed to be taken 
once a day immediately after the release, and thus the overnight mortality is not visible in the 
graph. In all three graphs, the release rate is held at 50 per release-day for the area in question. 
What is immediately apparent is that even four day intervals result in levels of sterile males greatly 
below that of daily releases. Balanced against that is the fact that the number of males released per 
week with four-day releases is only one quarter that of the daily releases. It is noteworthy that the 
sterile population decreases to about ten by the seventh day after the previous release. This means 
that the overflooding ratio will be oscillating by a substantial amount and generally below what is 
required. 

Figure 3 shows the sterile population for three values of daily survivorship: 0.9, 0.7 and 0.5 
and for the three release intervals shown (daily, every four days and weekly). The two lower 
survivorships yield much lower sterile populations than does a survivorship of 0.9. A daily 
survivorship of 0.5 probably represents about a lower limit to allow the continued existence of the 
species even with no control, but may be realistic for survivorship of steriles in some species. In 
their model of tsetse, Barclay and Vreysen assigned daily survivorships of 0.98 for wild males and 
0.92 for sterile males, and this appears to be consistent with values given in the literature. 
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Figure 3. The effects of interval between sterile releases on the level of the sterile population. 
Daily releases yield the highest and most consistently high population. Releases at intervals of both 
four days and seven days yield much lower ambient levels of sterile male populations as a result of 
mortality, and levels fall close to zero for weekly releases when daily survivorship is relatively low. 
In all cases, the release rate was 50 males per release-day. 
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Figure 4. The combined effect of daily mortality and release interval on the levels of sterile males, 
shown for release intervals of one, four and seven days at a rate of 50 males per release-day; eight 
days are shown for daily releases, eight days for intervals of four days, and seven days for seven 
day intervals. 
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7.1.10 The fertility factor 
The fertility factor, F / (F+S), that occurs in the equations of SIT models is graphed in 

Figure 5 for release intervals of one to seven days. The graphs are of the mean values of the fertility 
factors over the intervals between releases. It is apparent that the daily releases have low fertility 
factors, as the sterile population remains high, while the mean fertility factor increases as the 
interval between releases increases. Figure 5a, shows the results of a release rate of 50 per release, 
while Figure 5b shows the results of 50 times the number of days in the release interval; i.e., 50 for 
daily releases, 100 for releases every two days, up to 350 for weekly releases. It is seen that the 
fertility factors still increase with interval between releases (Fig. 5b). Thus, in planning sterile 
releases, account must be taken of the loss in efficiency as a result of long  periods  between 
releases. 
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Figure 5.  The mean fertility factor (i.e., F / (F+S), over the interval between releases increases 
throughout the interval. In panel A, the level of sterile release is held constant at 50 per release for 
all release intervals; in panel B, the release rate is 50 per day for all release intervals. It is seen that 
even when release rates per day are constant, daily releases are superior and suppress the fertility 
factor more effectively than do longer release intervals. 
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7.2 Shortcomings of SIT models 
 

Knipling’s original model 
The virtues of Knipling’s original model are that it is easy to understand and that it forms 

the basis of all of the more complicated models of SIT. It has been of great value in propagating the 
idea of area-wide application of SIT and in demonstrating its superiority to the alone insecticide 
treatments under some circumstances. However, the critical values of sterile release rates obtained 
from Knipling’s model are usually not completely realistic because of the existence of biological 
and operational complications that render these estimates insufficient, at least for most species of 
fruit flies. Furthermore, tropical fruit flies have a protracted breeding season  and  generations 
overlap, necessitating a more comprehensive approach to determining suitable release rates. 

 
Density-Dependence 

All the models of SIT with density-dependent population  regulation  show  that  critical 
sterile releases can be lower with density-dependence than without, but the various formulations of 
density-dependence make it clear that quantifying that reduction of required control effort depends 
on how the density-dependence works, and that is seldom known in detail, and thus the concept 
remains heuristic and not of much value in the calculation of critical sterile release rates. 

 
Discrete vs continuous 

Neither the discrete nor the continuous models completely capture the various biological 
aspects of any insect species. Continuous models generally ignore the seasonality of reproduction, 
and almost all SIT models ignore one or other of spatial variation and age distributions. The main 
problem is that mathematical models quickly become intractable as the number of realistic features 
increase, especially SIT models, with their inherent nonlinearity as a result of the ratio of ‘fertile 
females to total males’. All such models display a separation of behaviour in which a population 
above a certain critical threshold will increase under continuing sterile releases, while a population 
below that threshold will decrease. 

Competitive ability 

Competitive ability is really a collection of features, all of which can cause the mating 
frequency of sterile males with fertile females to be different from that of fertile males with fertile 
females. In the models, these are all lumped into one parameter, and this parameter is assumed to 
be constant, independent of population density, ratio of sterile males to fertile males, season, spatial 
distribution of steriles with respect to fertiles, etc. These is unlikely to be true, making the 
predictions suspect. 

 
Lekking behavior 

Lekking behaviour is complex compared to the usual assumption in most population models 
that mating is random. It yields unusual results compared with the usual simpler models (Horng & 
Plant 1992, Vreysen et al. 2006) and lekking should be considered in SIT models when it is present. 

 
Dispersal and diffusion 

Dispersal is often assumed to be random, but it may well be affected as well by  the 
propensity of insects to preferentially move either towards a given area of highly suitable habitat, or 
away  from areas that already  have high  densities of insects.  These tendencies will  distort the 



52  

 
 

predictions of any model that assumes dispersal is strictly random. This is difficult to determine, 
but does affect the results (Barclay & Vreysen 2013). 

 
Immigration 

The existence of immigration of wild insects into the control area generally disallows 
eradication (Prout 1978; Barclay 2001). In area-wide integrated pest management programmes, the 
control area is usually assumed to be large enough that it includes all of a local population and 
hence immigration is zero. However, this may not be the case, and if that is true, the extent of 
immigration should be estimated to assess its effects. 

 
Equilibrium models 

Most of the models of SIT have been equilibrium models, with little attention being given to 
what happens away from equilibrium. Equilibrium models can a give good idea of the effects of the 
parameters on the system and its behavior. However, in many situations, it is necessary to know 
what happens away from equilibrium, as in the situation involving the determination of an 
appropriate overflooding ratio after spraying examined above. For many operational questions the 
control programme manager will need to know what happens in these transient situations, and these 
should be investigated using species-specific computer models. 

A list of SIT models is given in Appendix 2 at the end. Also, a glossary of terminology 
used in this book is provided as Appendix 4. 

 

8. Estimation of SIT parameters 
Knowledge of some basic parameters is crucial to the success of any SIT programme (see 

chapter 2). With reference to the models outlined above, the basic parameters that will always be of 
interest are: F, the population size; λ, the potential rate of population increase each generation if 
generations do not overlap, or a, the daily fertility, if generations do overlap; qm, the proportions of 
the released males that remain fertile; c, the competitive ability of sterile males relative to the wild 
fertile male population; and the rate of movement of insects, both within the control area and into 
the control area from outside. Some of the estimations can be done using standard population 
biology methods. 

 

8.1 Population size 
The population size can be estimated from mark-recapture analysis or from relative indices, 

if the relationships between relative indicies and population size is known (see chapter 4). Hargrove 
(1981) used mark-recapture techniques to estimate the size of tsetse fly populations. Population size 
is very important to estimate, as it will indicate whether a knockdown using aerial sprays or other 
suppression should be done before the release of sterile males. Population size is the  basic 
parameter to decide on the required sterile release density to achieve suppression or eradication. 

8.2 Population growth rate 
The rate of increase, λ, would normally be determined using oviposition rates together with 

survivorships of the various life stages. Alternatively, µ (mean daily fertility) can be calculated for 
a population with overlapping life stages. 
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8.3 Daily sterile survivorship 
Survivorship of both fertile and sterile males is important in assessing the required 

overflooding ratio for eradication. The standard method in the laboratory is to establish a cohort 
(i.e. a group of individuals all of the same age) and to follow their numbers until there are none left. 
Counts are usually done daily, noting decreases as days progress. The counts are reduced to 
proportions by dividing by the initial colony size. Examples of survivorship curves are given by 
Carey (1982) for medfly (Ceratitis capiata) and by Vargas (1984) for the medfly and the oriental 
fruit fly (Bactrocera dorsalis). From these curves the life expectancy at hatching can be calculated, 
and they are also useful in computing life tables. 

8.4 Density-dependence 
The determination of density-dependence is problematic, because there are many models 

and none of them is particularly mechanistic. Most of these models can loosely be interpreted as 
being related to competition, but the common ones (e.g., the logistic equation – dN/dt = rN(K-N)/K 

(Pielou 1969), and the model of Varley et al. (1973) – N t+1 = (λ / α) N t 
(1-b)

) describe the numerical 
consequences of competition, but not the mechanisms of competition itself. Thus, rates of 
oviposition and subsequent survivorship would have to be monitored at various densities to derive a 
function to describe the depressing effects at various levels. In many wild populations, even just 
detecting the existence of density-dependence may be difficult, even more so the quantification of 
depressing effects. However, in view of the potential assistance to the SIT, an estimation of the 
effects of density-dependence is worthwhile. The subject of parameter estimation is partly 
addressed by Rogers and Randolph (1984) and developed further by Itô and Yamamura (2005). If 
estimation of density-dependence is impractical, it can be ignored and the resulting estimates of 
overflooding ratios will be overestimates, as density-dependence assists the action of sterile 
releases. 

8.5 Sterile dispersal ability 
The dispersal ability of sterile males is very important and can be assessed by releasing 

marked steriles and then recapturing them at several times after the release and noting the distance 
they have gone in the various time intervals (Shaw et al. 1967). This depends on their survivorship 
being high enough that there is a good chance of recapturing them at later times. It would be very 
useful to determine whether or not the sterile males disperse towards clumps of fertile males and 
females, or if dispersal is closer to random. This would perhaps be more meaningful if the steriles 
were released either uniformly or randomly and then observing subsequent redistribution by means 
of recaptures. 

Plant and Cunningham (1991) gave procedures for estimating the dispersal of the medfly, 
and estimates of immigration could be obtained from considerations of dispersal. Vreysen et al. 
(2011) have demonstrated that tsetse in their study showed similar patterns of dispersal for steriles 
and wild males. Enkerlin (1987), by releasing marked sterile Mexican fruit fly (Anastrepha ludens, 

Loew) from a single point, demonstrated that under the conditions of a non-suitable habitat, sterile 
flies disperse in an eccentric fashion following the direction of dominant winds, whereas, in a 
suitable homogeneous habitat the dispersion pattern was random. In the same study, using a simple 
method proposed by Hamada (1980), the mean dispersal distance of sterile flies released in the non- 
suitable habitat was of 1.3 fold compared with the flies released in a suitable habitat. These findings 
are useful in assessing fruit fly dispersal ability under different environmental conditions and thus 
for planning sterile fly releases. 
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8.6 Estimation of percent residual fertility 
The effect of some individuals remaining fertile following irradiation is to provide fertile 

males to the pest population. This does not matter too much when the population is high, but 
becomes important as the wild population declines, and when it may prevent complete eradication 
(Barclay 2001). The measurement of residual fertility can be done by paired encounters between 
irradiated males and wild females in the lab. The number of such encounters must be large if the 
proportion of males remaining fertile is very small (e.g. less than 1%). For example, the required 
sample size to reject the hypothesis that the residual fertility is greater than 1% at the  95% 
confidence level is almost 400, assuming that there are no cases of fertility discovered in those 
paired encounters. 

8.7 Estimation of sterile competitive ability 
Sterile competitive ability is a difficult factor to evaluate in the field. In the laboratory one 

can put a number of females in an arena together with a number of sterile and fertile males and 
observe who mates with whom and then calculate the relative effectiveness of the sterile males by 
comparing the relative frequency of ‘sterile male with fertile female matings’ with the relative 
frequency of ‘sterile males to fertile males’ in the arena (Cayol et al. 1999). For example, if there 
are ten females together with five sterile males and five fertile males, and if it is observed that eight 
of the females mate with fertile males and only two with sterile males, then the relative success of 
the sterile males is only one quarter that of the fertile males. In the equation for mating success with 
inferior sterile male competitive ability, the parameter c measures this relative success, so c = 0.25 
and the fertility factor is M / (M + 0.25S). If M = S, then the fertility factor is M / 1.25M = 0.8, as 
originally observed in the mating arena. One must again be careful in assigning values to c here 
because of sampling error. In order to be confident that we are close to the real value of c (relative 
competitive ability), one should perform the arena experiment many times to get a fairly large 
sample size and minimize the effects of sampling error. 

Conditions in the field may be quite different from the arena situation and sterile males may 
perform differently in the field than in the arena. Thus, we may want to sample males with traps 
using marked sterile males and unmarked wild males and then also sample eggs (if possible), and 
then incubate the eggs and observe the relative frequency of sterile versus fertile eggs and compare 
that with the relative frequency of sterile males versus fertile males in the field and see if the two 
ratios match or are different. Here, allowance would have to be made for the usual fraction of eggs 
that would not hatch even from fertile-fertile matings. If the ratios are different, then a method 
outlined below can be used to derive the competition coefficient, c, for sterile male competitive 
ability in the field. If the number of sterile males in the traps is S and the number of wild males is 
M, and if the observed number of eggs that hatch is ef and the observed number that don’t hatch is 
es, and if we know that the hatchability of eggs is h, then we must subtract from es both the eggs 
that failed to hatch as a result of fertile matings (hef) and also those that would have failed to hatch 
from sterile matings even if they had resulted from fertile matings (hes), so that the two ratios then 
can be equated: cS/M = (es – h(ef + es) / ef, and so the estimate of c is: 

c = M [es – h (ef + es)] / ef (76) 

Part of the inability of sterile males to find fertile females to mate with in the field may be due to 
the inability of sterile males to disperse in the same pattern as the wild males, or otherwise integrate 
themselves into the wild population. This is not a direct sort of competitive disadvantage, but 
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operates as such since it results in lack of mating with fertile females. Note also that if the wild 
males and the sterile males are not equally trappable, then the above estimate will not be valid. 

We have seen that competitive ability of sterile males, c, could then be determined where 
immigration could be assumed to be negligible, using equation 76, for competitive ability, and then 
solving for c. The information on growth rates and residual fertilites must be determined first, or 
the equation becomes confounded. Alternatively, Meats (1998) used release and recapture 
techniques to estimate the quality of released sterile insects. Immigration into the control area could 
then be determined using either mark-recapture or the equation involving immigration. For fruit 
flies, standard tests have been developed (FAO/IAEA/USDA 2003). 

Fried (1971) provided a method of estimating mating competitive ability of sterile males 
relative to wild males by calculating egg hatchability with known numbers of fertile and sterile 
males. Thus, if there were 100 wild males in the population of a given area and releases had been 
made that maintained 200 sterile males in the same area, and the eggs were collected after 
oviposition and 40% of them hatched, then the expectation is that 33% would hatch and 67% would 
not hatch, so that the efficiency of the sterile males in fertilizing female eggs would be 60/67 = 0.89 
(see also FAO/IAEA 2007). 

8.8 Over-flooding ratios used to suppress insect populations with SIT 
Two contrasting situations exist that require different treatment to find the over-flooding ratio. One 
is that the pest species reproduces once per year in a short period during the growing season and 
then the adults die at the end of the season. This is what Knipling had in mind when he formulated 
his famous equation (eq. (1)) and for that reproductive pattern, his result works well. The other 
situation is that of a population that grows more or less continuously during the growing season, 
such as is the case with many fruit flies. In this case, the over-flooding ratio, calculated as the 
number of sterile males in the field divided by the number of wild males in the field, is not simply 
the release rate divided by the wild male population, because the sterile males in the field consist of 
those from several releases. This section explores the latter situation in which growth is more or 
less continuous during the growing season. 

Many applications of SIT and other control agents will be applied when the population is at 
low levels and on the increase. Thus we will investigate below the relationship between the critical 
daily release rate, r*, and the required overflooding ratio for the use of SIT, as well as  the 
relationship between the mean net daily fertility, µ, and the pre-adult survivorship, γ, with the 
critical daily release rate, r*. 

The overflooding ratios required for eradicating the residual population left after an initial 
knockdown by bait  sprays will depend on  the induced sterility of the wild  population by the 
released steriles and the reproductive rate of the pest. The size of the wild population after spraying 
will depend on the frequency and interval of spraying and this will necessitate the determination of 
the size of the wild population in order to apply the correct overflooding ratio. However, the size of 
this population may change immediately following the final spray. We offer three scenarios with 
differing requirements for overflooding ratios. 

 
8.8.1 SIT without initial knockdown: Equilibrium population. 

In the case of SIT against a stable population, the age structure of the population will be in 
its equilibrium configuration, with adults forming a substantial part of the total population.  Figure 
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6a shows a typical configuration of the numbers in each of four stages (eggs, larvae, pupae and 
adults) for a population that is increasing; typically the adults form only a small proportion of the 
total population and are by far the least numerous stage. Figure 6b shows schematically the type of 
population structure to be expected from a population at equilibrium; the stages decrease in number 
from egg to adult, but the adults form a larger proportion of the total population. The population is 
at a stationary age distribution and the adult population will continue near its equilibrium level until 
the reduced recruitment of juveniles causes the younger adult age classes to also be reduced. The 
reduction of the population should proceed in an orderly manner from equilibrium  down  to 
eventual eradication. 

The critical daily release rate (see Appendix 1) for a stable population has been given in eq (73) and 
it is: r* = γµFT [γµ (s)

τ 
– (1 – s)] / (1 – s), (Barclay et al. 2014) in which γ is the total pre-adult 

survivorship, µ is the mean net daily fertility, s is the daily adult survivorship and τ is the time in 
days before adult females become receptive for mating following emergence from the pupae. For 
simplicity, s is taken as the geometric mean of the daily survivorships, si, and thus assumes an 
exponential survivorship curve in which the probability of survival over time is assumed to be a 
constant proportion of the remaining population. For the B. dorsalis data from Vargas et al. (1984), 
the parameter values are: µ = 12.18, γ = 0.63, τ = 6 and s = 0.961. This gives the critical value of r 
as r* = 817 FT. 

 
8.8.2 SIT without initial knockdown: Increasing population as a resource becomes 

available 
An increasing population will be proceeding towards a stable age distribution. In such a 

population, the adult stage will form only a small proportion of the total number of individuals, and 
the early juvenile stages will be the major component of the population (Fig. 6a). This is 
characteristic of species that have a seasonal resource that they prefer. One example is medflies, 
which are polyphagous, but may have the most successful population increase in coffee (Coffea 

arabiga) (Gutiérrez Samperio 1976, Midgarden and Lira 2006). During times when the coffee fruit 
is not available, the medflies can exist on other hosts, but the population increases dramatically as 
the coffee fruit ripens. This same behavior is observed with the West Indian Fruit Fly (Anastrepha 

obliqua) that uses the hog plum (Spondias spp) and then the mango (Mangifera indica) just after 
Spondias spp, or the Mexican fruit fly (A. ludens) whose population increases as the grapefruit 
(Citrus paradisi) ripens (Aluja 1984, Enkerlin 1989). In this type of increasing population, each 
component of the population will increase each time period and so a constant overflooding ratio 
established at any time will immediately be out of date by the next time period. A stationary 
population is shown in Fig 6b. In a decreasing population, the juvenile stages are reduced and the 
adults are often numerically dominant (Fig. 6c). 
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Figure 6.  The relative numbers of the four stages (eggs, larvae, pupae and adults) for (a) an 
increasing population, (b) a stable (stationary) population at carrying capacity, and (c) a decreasing 
population. In the increasing population, the juvenile stages greatly predominate, while in a 
decreasing population, the adults are relatively greater in numbers. 

 
8.8.3 Initial knockdown followed by SIT 

If the knockdown only kills adults (often the case with many fruit flies) then after the first 
spray the adults are at low levels, but there is still a large number of pupae. Immediately after the 
first spray as the pupae emerge, the adult population will increase  dramatically.  This  makes 
obsolete an overflooding ratio calculated from the adults remaining after the spray,  and  the 
situation is somewhat similar to that of a growing population. If there are several sequential bait 
sprays, then the pre-adult stages (egg, larvae and pupae) will emerge and be killed off as young 
adults with each succeeding spray until the store of pre-adults is exhausted or greatly reduced; after 
this, if sprays cease, the overflooding ratio calculated on the basis adults remaining after the last 
spray will remain relatively stable for some time until enough pre-adults have been recruited to 
start causing the adult population to increase. If the overflooding ratio applied is above that which 
is theoretically required, then this population increase should be prevented from occurring. 
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If the mature larvae are removed by collecting and destroying the fallen fruits at the same 
time as the bait sprays are done, then two waves of adults may emerge as the pupae and then the 
eggs in the fruits that remained in the tree complete development and become adults. This is again 
prevented from becoming an erupting rapidly growing population by means of using several sprays 
properly spaced and a liberal overflooding ratio. 

 
8.8.4 Stopping a growing population 

The previous computations of critical release rates are all from equilibrium populations. 
Most populations are in some stage of growth when a control program begins, unless the insect 
species reproduces only once per year and then dies, in which case Knipling’s formulation will 
work. In a growing population, one must allow for the fact that the population is increasing, so the 
required sterile release rate to reduce the population will necessarily be larger than the values of r* 
derived at equilibrium, because it takes some time for the effects of sterile releases to result in 
reduced recruitment and also because it requires several releases to bring the sterile population in 
the field up to equilibrium. Fig 7 shows that when the population is growing freely, the actual 
release rate needs to be much greater than that if the system were at equilibrium. A numerical 
treatment of the models shows that the release rate required to stop a growing population depends 
on the fertility rate, a, and the daily survivorship, s, and that the required release rate increases with 
both a and s. Figure 7 shows the discrepancy for sterile releases as a multiple of the control effort to 
hold a population at equilibrium for sterile releases. This multiple is virtually identical to the ratio 
of ‘the population size after stopping’ and ‘the population size at the onset of sterile releases’. This 
information is perhaps best obtained by a computer simulation of the species to be controlled and 
trials at various values of trapping effort. 
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Figure 7. The multiple of the critical release rate, r*, that is needed to stop a population that is 
freely growing when sterile males are first released. This multiple is almost exactly the same as the 
ratio of ‘the size of the population when sterile males are first released’ divided by ‘the size when it 
stops growing as a result of sterile releases’. This is shown for several values of fertility, a, and two 
values of adult daily survivorship, s. 
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9. Suppressing fruit fly populations with bait sprays 
If bait sprays are 100% effective in killing adults, then a series of sprays may be able to 

eradicate the pest population without further control methods being required. However, this is 
seldom the case. Usually there are adults that are not affected by the sprays because they are under 
leaves, in holes, are resistant, or otherwise inaccessible to the action of the insecticide. Sometimes 
sprays are applied above a second layer of leaves, like in a coffee plantation or forest so the spray is 
less than the amount needed in areas where the adults are located. It is useful to know the 
approximate effectiveness of each spray in order to keep track of the probable size of  the 
population after each spray. 

 
 
9.1 Factors affecting bait spray effectiveness 

 

9.1.1 Percent kill of each spray 
Percent kill may be known from previous spraying trials or may be estimated by using 

mark-recapture techniques to estimate the size of the population both before and after each spray. It 
will be useful in planning the number of sprays as well as the intervals between sprays. 

 
9.1.2 Intervals between sprays 

Intervals will be affected by the stages that are killed by the sprays, the age to  first 
oviposition by females, and the longevity of the stages not affected. Ideally, the interval should be 
short enough to prevent newly emerged adults from ovipositing, but long enough that the series of 
sprays will entirely cover the period from oviposition to emergence of adults. If the period from 
emergence to first oviposition is very short, then shorter intervals or extra sprays may be needed. 

 
9.1.3 Number of sprays 
The number of sprays should be sufficient that the pest population is reduced enough to allow the 
SIT to operate effectively. The number of treatments has a wide range depending on the insect 
species, climate conditions, etc. The time from egg to ovipositing adult will  be  important  in 
allowing the pre-adult stages to be reduced by natural progression into the adult stage if they are 
not directly affected by the sprays. This is the case in fruit flies, where the preadult stages occur 
inside the fruit or in the soil, so that they occupy a different habitat from the adults. 

 
 
9.2 Optimizing spray interval 

 

9.2.1 Age at first oviposition 
Age at first oviposition is a critical factor affecting spray intervals. Adult insects usually 

take time to mature before mating and then ovipositing. If sprays are timed so that the interval 
between sprays is smaller than the interval from adult emergence to first oviposition, then 
subsequently emerging adults will be killed before being allowed to oviposit. The number of sprays 
will depend on the time it takes from oviposition to adult emergence and number of generations per 
year or number of generations during the critical period required for population suppression. An 
example will illustrate this. In tsetse, the period between larviposition, pupation, and emergence of 
adults from the pupae is about 27 days at 27oC, while the age to first larviposition is about 17 days 
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following emergence of the adults. If the mean temperature is 27oC, and the inter-spray interval is 
15 days, and sprays kill 90% of the adult population, then the first spray will eliminate most of the 
adults, the second spray 15 days later will eliminate most of those adults that have emerged from 
the developing pupae, but before they start ovipositing, and a third spray will kill most of the adults 
that have emerged from the remaining pupae that were alive at the time of the first spray, again 
before they start ovipositing (Fig. 8). The population is then in a suitable state to be controlled by 
the sterile releases, as there will be little increase in the adult population for some time, long 
enough that SIT should decrease the recruitment of juveniles and prevent this increase. 

The output from a model of tsetse developed by Barclay and Vreysen (2011) illustrates this. 
Fig. 9 shows the course of the adult population following two, three and four applications of aerial 
insecticide sprays, each of which  kills 98% of  the adult population. For each  of these three 
scenarios, a sterile release ratio (daily releases divided by the existing wild male population) of 0.2 
was used, calculated immediately after the last spray. The tsetse example is presented because it is 
particularly clear. However, tsetse is almost unique among insects in giving live birth to larvae. A 
more typical species is medfly, so an example is given for medfly below. 
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Figure 8. The results of three sprays that each kill about 90% of a population of adult tsetse flies. 
The six panels show the numbers of pupae (on the left within a panel) and adults (on the right 
within a panel) both immediately before a spray (left panels) and immediately after a spray (right 
panels) for each of the three sprays (top: first spray; middle: second spray; bottom: third spray). 
The pupae have all been reduced by the end of the third spray. 
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Figure 9. Determination of the number of sprays required to reduce all stages of the insect 
population to a low level. The example is for tsetse and shows that after two sprays, each kill 98% 
of the adult population, the adults still increase linearly in the days following the second spray. 
After the third spray, the adults increase for a few days and then level off. After the fourth spray, 
the adults stay at a low level for several days. 

Medflies have a pre-adult period of about 19 days and a period from adult emergence to 
oviposition of about three days (Vargas 1984), at least for colony material under laboratory 
conditions; the pre-ovipositional period is closer to two weeks for wild Medfly (Vargas et al 2000), 
but we will use the lower value here. In this situation, the inter-spray interval would ideally have to 
be about three days (if the action of the spray did not persist longer) and the number of sprays 
would have to be sufficient to cover the 19 day developmental period. To ensure that significant 
reproduction would not occur after the first spray, seven sprays would have to be done following 
the first spray. In many cases, the insecticide remains active in the field for a week or more. For 
these insecticides, the number of sprays could be reduced, spraying only often enough  that 
sufficient active insecticide is always present during the critical adult pre-oviposition period. 

As noted above, Vargas' 1984 data were obtained from a laboratory colony under ideal 
insectary conditions, including excellent nutrition. If nutrition is less than ideal, as it often is in the 
field, then the delay between emergence of the adults and first oviposition may be considerably 
greater, so that the number of sprays required may be considerably fewer. 

 

Besides nutritional differences between colony and field flies, it appears also that there is 
adaptation of the insects in the insectary for many generations leading to accelerated sexual 
maturation. Vargas et al 2000 estimate the length of the pre-ovipositional period of wild Bactrocera 

dorsalis to be 37 days at 24oC, compared with just 7.3 days at the same temperature for colony 
material (Vargas et al 1997). 

 

If the period until first oviposition were six days in the field (as is often said to be the case 
for medfly), then the required number of sprays would be reduced to five; the first would kill most 
of the adults and then the next four would cover the period required for the emergence of all the 
pre-adults remaining after the first spray. However, for fruit flies, one generation is often not 
enough, and sprays should continue until the population is down to the required level. For medfly 
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under tropical and subtropical conditions, it takes at least two generations (7 to 8 sprays with a 
seven to ten day interval using a spinosad based insecticide bait) to suppress populations to the 
required threshold for sterile release (FTD = 0.1). Since all biological processes display variability 
and things simply go wrong sometimes, it would seem prudent to add a few sprays to the minimum 
number calculated by the reasoning in the above examples, especially if there is much likelihood 
that one or more of the sprays would miss a significant proportion of the adults or there has been 
much variation in daily temperature. Also, if many individuals escape being killed (e.g. due to 
heavy rain after a spray), it would be necessary to add enough sprays to cover one more generation. 

Species with very short times to oviposition might better be reduced by a combination of 
sprays and bait stations or mass trapping to avoid the very large number of sprays required for the 
reduction. 

 
9.2.2 Temperature 

The effects of temperature on development have been outlined in chapter 5 above. If the 
temperature is different from that used in the calculations above for tsetse, for example, then the 
calculations would have to be redone. This will have the effect of changing the inter-spray interval 
and may even have the effect of changing the number of sprays.   The situation is illustrated for 
tsetse for a mean temperatures ranging from 15oC to 45oC, and these are shown in Fig. 10 (data 
from J. Hargrove).   The pupal developmental period  is  less  than double the period until  first 
larviposition from about 23o up to 45o  and thus the minimum number of sprays would be three for 
eradication if the sprays killed 100% of the insects. Below 22o  the pupal period is greater than 
double the period until first larviposition, and at least one additional spray would be needed (more 
for very low temperatures). Thus the periods of development to the adult stage and age at first 
oviposition do not follow similar patterns at lower temperatures. Admittedly, the range of 
temperatures used has extremes outside the normal range for tsetse, but the graph illustrates the 
point that a  determination for a single  mean  temperature will not  necessarily  be useful at all 
temperatures encountered by the species. 
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Figure 10. The effects of temperature on the determination of the number of sprays required to 
reduce a tsetse population to the point that all the pupae have been reduced. In this case, three 
sprays are sufficient for the temperatures above 24o. Below 23o, the pupal developmental period is 
so long that extra sprays are required to reduce the pupae if the inter-spray interval is to be short 
enough to disallow emerged adults from larvipositing for the first time (data for the graph from J. 
Hargrove). 

 

10. Suppressing fruit flies with sterile insect releases 
The Sterile Insect Technique (SIT) is usually preceded or accompanied by a reduction in the 

wild population through a combination of control methods including insecticidal bait-sprays, bait 
stations, mass trapping, fruit stripping, biological control and others. This initial reduction will be 
accomplished by the methods and considerations described in the previous chapter. As described 
above, a single spray may effectively reduce the adult population to very low levels, but it will 
usually increase quickly in the days following the spray with the emergence of new adults from 
larvae and pupae if they were not affected by the insecticide. Thus, often several sprays, or an 
extended period of bait stations or mass trapping, will be required to reduce the reservoir of recruits 
from the juvenile stages, before the application of SIT can be most efficacious. 

A problem associated with SIT is estimation of the remaining adult population in order to 
estimate the release rates and overflooding ratios required for SIT to be effective. In addition, the 
actual overflooding ratio that exists after the release of steriles has begun will require monitoring, 
with adjustments in release rate if necessary. These topics are the main focus of this chapter. 

For the calculation of required numbers of sterile releases, absolute estimates are preferable, 
although they may be obviated by monitoring the results of trapping both wild and steriles flies (see 
the section on determining sterile:fertile ratios from trapping, below) which can be used directly as 
an estimate of the existing overflooding ratio (for detailed information on the SIT principles and 
strategies see Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest 
Management, Dyck et al. 2005). 

10.1 Sampling  sterile fly populations 
A major difference between sampling wild and sterile fly populations is that in the wild it 

may be necessary to guess the fly’s whereabouts, but for the sterile flies managers should know 
where they were released, so sampling should correspondingly be easier, at least  before  they 
disperse. 

 
10.1.1 Sterile fly distribution and abundance after releases or dispersal of sterile flies 

Since SIT is more cost-effective at low densities and the release rate at higher pest densities 
must be higher, release events should be planned so that the clumps of wild flies get higher 
numbers of steriles than the areas sparsely occupied by the wild flies. 

If it is not possible to selectively apply the steriles, as is the case with the chilled sterile 
adult aerial releases, then it is best to release sufficient steriles to cover the area at a density high 
enough that the clumps get reduced as well as the sparse areas. If only enough steriles are released 
such that the overflooding rate is sufficient to reduce the average density, then small clumps of 
residual insects where the density of steriles was insufficient to eliminate them will be left. For 
example, the Moscamed Program uses a gradient of sterile to fertile densities based on the pest 
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densities in the different control areas and also based on the control objective (suppression or 
eradication). If necessary, the densities are adjusted (increased or decreased) weekly, based on the 
sterile: fertile ratios obtained from monitoring traps (see Section 10.1.3 below on sterile: fertile 
ratios). The range of sterile to fertile fly densities is from 500 to 6000 per hectare (Programa 
Moscamed 2011). For detailed information on sterile fly packing, shipping and release see: 
Trapping Guidelines for Area-Wide Fruit Fly Programmes (IAEA, 2003). 

The alternative plan would be to release enough steriles to reduce the average density of 
wild insects and hope that the steriles will redistribute themselves in the same spatial arrangement 
as the wild insects. This may or may not be realistic, depending on the reasons for clumping of the 
wild insects and the mobility of the sterile insects. If the clumping of the wild insects is caused by 
variation in attractiveness of habitat, then the steriles may redistribute themselves in the same 
pattern as the wild insects (Gavriel et al 2012). If the distribution of the wild insects is caused by 
local reproduction in spot infestations and lack of subsequent movement, then the steriles may not 
redistribute themselves in the same pattern, and the efficiency will be reduced. In some cases it 
appears that redistribution does occur (Vreysen et al. 2011). 

One way of evaluating the sterile fly spatial distribution is by the number (percentage) of 
traps that capture sterile flies. The trapping network should cover the area where hosts are present 
and a  minimum of  85%  of the  traps capturing at least one  sterile  fly is  considered to be an 
acceptable sterile fly spatial distribution (Programa Moscamed 2011). This gives a fly per trap per 
day (FTD) index for sterile flies. With this figure it is possible to compare the efficacy of different 
methods of releasing sterile flies as: ground releases, released by helicopter, by airplane, releases in 
paper bags, as chilled adults, etc. The capture of fertile flies will give an FTD index for fertile flies; 
this is used to compute the sterile: fertile ratio by dividing the sterile FTD by the fertile FTD 
(FAO/IAEA, 2007). The ratio can be adjusted based on the progress of the programme as explained 
above. Unfortunately, unless an independent method is available for estimating the sterile 
population, separating the effects of population size from sterile trappability is intractable if steriles 
and wild insects are not equally attracted to the traps. 

 
10.1.2 Sex ratio 

The sex ratio in many species of fruit flies is one-to-one at adult emergence. This can be 
important in assessing the overflooding ratio when using SIT. The sex ratio can be estimated from 
single captures using traps. However, this assumes that both males and females are  equally 
attracted to the traps and that both are available for capture at the same time and at the same 
location. This is not always the case and this possibility must be considered when making this 
assessment. 

From a single capture of sufficient size to be useful, the female-to-male ratio is simply the 
number of females divided by the number of males captured. If multiple captures are used, then the 
ratio can be obtained by summing the numbers of females and the numbers of males and basing the 
ratio on the sums, rather than on individual captures. Thus, if the total number of females in the set 
of captures was 46 and the total number of males was 30, then the female-to-male ratio would be 
46:30, which reduces to approximately 1.5:1. 

This ratio is biased, as there is a variable in the denominator, and that always produces a 
bias. In addition, the bias will be larger if the numbers of females and males in each trap are 
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converted to a sex ratio and then the trap sex ratios averaged than if the numbers of females and 
males are summed before converting to a sex ratio. However, the bias will be small if the numbers 
of females and males in the sample is relatively large (i.e., more than 30). If the numbers are small, 
then the ratio can not be trusted; this is true for two reasons: (i) the bias is large, and (ii) sampling 
error is also large. Sampling error is the error that would occur if one was selecting a sample of 
items of two or more categories from a large population. For example, children in single families 
are such a case; considering families with four children, the numbers of boys may be none, one, 
two, three or four, even though the average sex ratio over all families of four children in a large 
area is approximately one-to-one. With very large families it would be unusual to have all the 
children of the same sex; with smaller families, it is not so unusual. This is the effect of sampling 
error and it is also the case with trap catches. 

The sex ratio can be used to assess the progress of eradication of the pest population if the 
sterile males are unmarked and not distinguishable from wild males and sterile females are not 
being released. If one samples the pest population and finds that the sex ratio is 1:5, and if the 
sample is large, then one can estimate that the sterile male to fertile male ratio is about 4:1; 
assuming the sex ratio in the wild population is one-to-one. If this ratio increases over time with 
sterile releases remaining constant, then one can infer that the wild population is decreasing. This 
technique can be illustrated by an example. If F = wild females, M = wild males and S = sterile 
males, then with a sex ratio of 1:5 (females to males), and if we can assume that the wild sex ratio 
was 1:1 at adult emergence, then we can say that F = M, so that F / (M+S) = F / (F+S) = 1/5 = 0.2, 
so that 5F = F+S, so S = 4F, and the ratio of steriles to fertiles = S/F = S/M = 4:1. 

 
10.1.3 Sterile : Fertile Ratio 

This technique can be used to estimate the ratio of sterile: fertile males if the sterile males 
are marked. Using traps that attract males, the steriles can be marked before release and then 
counted on a subsequent recapture along with the wild males. If captures are sufficient, then 
meaningful results can be obtained and the effective overflooding ratio can be assessed. However, 
this assumes that sterile males and wild males are equally trappable. The estimation is straight 
forward. If such trapping yields S marked steriles and M unmarked wild males, then the 
overflooding ratio is S/M. This method gives a more precise estimate of the sterile-to-fertile ratio 
than if the steriles were not marked. However, if sterile and wild males have different 
survivorships, then the overflooding ratio will change following a sterile release (see chapter 11). 

 
10.1.4 Aggregation 

The distribution of Medflies in nature is thought to be patchy (Papadopoulos et al., 2003). 
Barclay (1992) used the Negative Binomial Distribution to determine the effects of clumping on the 
required release rate of sterile males for eradication and found that for k = 0.25 the required release 
rate was four times that for a uniformly distributed population (k is a parameter of the negative 
binomial distribution; see section 3.2.2 above). The curve of k versus required sterile release rate 
given by Barclay (1992) is approximately exponential, with the required sterile releases increasing 
greatly as aggregation increases and k becomes very small. In the other direction, as k increases 
towards infinity, the distribution approaches random, and the required release rate is not much more 
than that from the Knipling model. When the spatial distribution is uniform, the required release 
rate is exactly the value from the Knipling model. 
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10.1.5 Dispersal and immigration 
Movement of individuals is characteristic of all insect species. For most species, dispersal is 

necessary to ensure mating and to locate food and shelter. If individuals move,  they  tend  to 
intermix, and this allows sterile individuals to encounter mates in the wild population, which 
facilitates control by SIT. However, if wild insects move into the control area from outside of the 
control area, then this reduces the effectiveness of SIT and may make eradication more difficult or 
impossible. Also, if wild individuals move towards clumps (which may represent resource clumps, 
such as water, food or oviposition sites), then the degree of aggregation may increase,  again 
increasing the difficulty of control by SIT; on the other hand, if they move away from the clumps 
(perhaps as a result of avoiding crowding effects), then aggregation becomes less extreme and 
control by SIT becomes easier. 

If sterile insects move in patterns similar to the wild insects, then they too will move toward 
(or away from) clumps and control becomes easier; however, if they do not disperse in patterns 
similar to the wild insects, then control will be more difficult, as they will not encounter wild 
females as often as the wild males will. 

When sterile flies are released by airplane, during the first moments after being released the 
population may maintain a relatively uniform or random distribution. Once these flies reach the 
ground and start moving according to ecological and environmental factors present in the release 
site, they may tend to clump. However, in homogeneous areas, (i.e. forest, jungle, coffee 
plantations, large areas covered with a single host orchards, etc.), the sterile  population  may 
maintain a more uniform or random distribution. These patterns of movement of sterile and wild 
insects should be determined in order to assess their consequences. This has been done with some 
species (e.g., tsetse by Vreysen et al. 2011) but movement may vary from one location to another, 
so it would be useful to do these estimations for each SIT programme (Enkerlin, 1987). 

 
 

11. An intervention model: Fixed-area model. 
Hendrichs et al. (2005) describe the basic spatial elements of an Area-Wide Integrated Pest 

Management (AW-IPM) programme. The first element is the core area, in which the aim is to 
reduce (in case of a suppression strategy) or eliminate (in case of an eradication strategy) the pest 
species. The second element is a buffer area that borders the core area on four sides and within 
which control methods attempt to kill the target insects within that zone, including those that enter 
the area from outside. The buffer area is the region of an AW-IPM program on the outer edge of the 
control area and is large enough to prevent the pest insects moving from outside the buffer to the 
core area; any individuals that enter the buffer area should be destroyed by the control methods 
operating within that zone. The width of the buffer area is central to determining the minimum area 
of an AW-IPM program, since it defines the smallest possible programme that is economically 
feasible. 

The fixed area model considers a rectangular core area, surrounded by a rectangular buffer 
area (Fig. 11). This model reflects a situation where the farmer wishes to maintain an area (the core 
area) pest free or at low pest prevalence without enlarging or moving the area that contains the 
resource of value. The first aim of the model was to determine the minimum width of the buffer 
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area given the biological characteristics of the pest and the resources of the AW-IPM program. The 
second aim was to estimate the minimum core area that would result in a viable AW-IPM program. 

Numerous simplifying assumptions are made: (i) there is a single target pest insect; (ii) the 
model does not include the initial process of pest density reduction in the core area because of the 
difficulties of assessing that aspect, i.e. the model assumes that the core area is already a pest free 
area (or an area of low pest prevalence); (iii) the host density in all areas (the core area, the buffer 
zone and outside the buffer zone) was assumed to be at equilibrium; (iv) there is a constant influx 
of pest insects from the region outside the buffer zone; and (v) no artificial movement of the target 
pest insects by wind, storms, other disturbances or accidental introduction by humans into the core 
area occurs. 
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Figure 11.  Schematic representation of the area-wide approach to pest management in which there 
is a central core area (A) to be protected and a buffer (B) surrounding the core area within which 
control occurs. The buffer must be wide enough to allow the pest population to be reduced to zero 
on its inner edge, so that the core area remains pest-free. Area on the right is outside the buffer and 
control area and is assumed to be a source of insects (the arrow) for the control area. 

A model with a minimal number of parameters (inputs) is usually required if the model is to 
have a wide applicability. The required parameters will have to be determined for each species 
before the model can be used since parameter values will vary for different species and 
environments. The parameters are discussed below. 

The fixed area model consists of two main components, i.e. a biological component (i.e. 
dispersal) and an economic component (break-even analysis). The dispersal part describes the 
movement of the insects across the buffer area and will determine the width of the buffer area. The 
economic component of the model will, given a certain width of the buffer area determined by the 
dispersal part, allow a calculation of costs and revenues of the control program and will determine 
the break-even size of the core area at which control costs equal revenues. 

11.1 The biological component: Width of the buffer area 
The pest population will have a certain ambient density outside of the buffer area and will 

disperse from outside into the buffer area. Because control measures are imposed within the buffer 
area, the density of the pest will decrease from the outer edge of the buffer to the inner edge. The 
width of any buffer area around a core area should be large enough to bring the density of the pest 
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to zero (in case of a pest free area) or close to zero (in the case of an area of low pest prevalence) in 
the core area (A) (Fig. 11). The buffer zone should therefore be wide enough to prevent a gravid 
female insect and any of its offspring crossing the buffer zone. 

If the population is growing and dying, as well as diffusing, then an appropriate model 
would be: 

∂F (x, t ) 
∂t 

 
= D ∇ 2 

 
F (x, t) + g(F (x, t)) 

 
(77) 

 

where g is the growth function. If g is linear and births and deaths can be separated, then: 

∂F (x, t ) 
∂t 

 
= D ∇ 2 

 
F (x, t) + βF (x, t) − δF (x, t)) 

 
(78) 

 

where βF(x,t) and δF(x,t) are the instantaneous birth and death rates (Barclay et al. 2011). This 
model in the differential equation (77), without the term using g, was originally formulated in the 
18th century to describe the diffusion of heat along a metal rod, but has been widely used since then 
for various diffusive processes such as Brownian motion and animal movement. It assumes that all 
particles  that  are  diffusing  are  identical  and  that  movement  is  random.  The  model  can  be 
formulated in one, two or three dimensions. 

 
The boundary conditions should be such that at the outside of the buffer area, F(0,t) = F0, 

where F0 is the density of insects at the outer edge of the buffer as a result of the influx of insects, 
and at the inside edge of the buffer, F(w,t) = a small proportion of F0  (e.g. 10-6), so that almost all 
the insects have been killed before reaching the other side of the buffer (of width w). 

 

If we are manipulating the death rate within the buffer by traps that are evenly 
spread out to cover the whole of the buffer region, then (βF - δF) will be negative, because now δ 
consists of the sum of natural and imposed mortality from traps or any other control source. To 
simplify the treatment here, we assume that we are dealing with a steady state situation in which the 
insects have been diffusing and the buffer has been under control for a long time. In this case, the 
time derivative is zero, since nothing is changing over time; only the space derivative is still non- 
zero. This yields the steady state equation: 

 

D ∇ 2 F = (δ − β )F ) (79) 
 

and this has solutions proportional to e
-γx, where γ2 = (δ - β) / D. Assuming F(x) = c e

-γx, the 
boundary conditions dictate that c = F0 and that F0 e

-γw   = 10-6 
F0. Taking logarithms, -γw = ln(10-6) 

= -13.8. This leads to the minimum buffer width: 

w = 13.8 / γ =  13.8 / [(δ - β) / D]1/2 . (80) 

The diffusion coefficient, D, is determined in the same way as it was for random walks (see chapter 
5). If a decrease down to 10-6 of the original density outside the buffer (F0) is not satisfactory, then 
some other small fraction can be chosen and the constant 13.8 will be something else.  The units of 
w in eq. (80) are in the units of D, and the units of β and δ must be the same as those of D. Thus if 
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the units of β and δ are in terms of numbers per week, then D should also be in terms of distance2 

per week. 
 

If sterile insects are used as the control method, then it is simplest to solve for the case in 
which the release of sterile insects is proportional to the ambient population; so, β is to be 
manipulated, rather than δ, and the development is similar. This case has the decrease in fertility 
being constant because the sterile release rate is proportional to the wild population, and thus the 
fertility (or sterility) ratio is constant. If this ratio can be determined to be some constant, β’, then it 
will have to be small enough that δ > β’ and then the determination of minimum buffer width 
proceeds in the same way as above, with β’ replacing β, and with δ only consisting of natural 
mortality in eq. (78) above. The rest of the calculations are identical to those in equations (77) to 
(78). 

 

If sterile releases are to be maintained at a constant level throughout the buffer region, then 
we could use the first value computed for the model above and simply continue to use that 
throughout. 

A minimum set of parameters for inclusion in the diffusion model are: the diffusion 
coefficient, daily birth and death rates, ambient density of the fertile population, competitive ability 
of the released sterile insects, and sterile release rate as a multiple of the ambient density of fertile 
insects. 

 
 
11.2 An Approximate method 

It may be that the method outlined above is not feasible, perhaps due to lack of parameter 
values. If that is the case, then we could use an approximate method for determining the minimum 
buffer width as follows. If one has estimates of the maximum lifetime of males and females and the 
maximum lifetime dispersal of fertile males and females as well as the time required to reduce the 
wild population to zero, then one can estimate the length of time it would require to reduce the wild 
population to approximately zero by the control methods used in the buffer, and then the minimum 
width would simply be the maximum distance that the insects could disperse in the time taken to 
reduce the buffer population to zero. If dmax is the maximum lifetime dispersal, Lmax  is  the 
maximum lifetime for the insect to live and tmin is the time required to reduce the wild population to 
zero under the control method and strength used in the buffer, then the minimum width, wmin would 
be: 

 

wmin = dmax (tmin / Lmax) (81) 

Thus, if the maximum lifetime dispersal distance is 4 km, the time required to reduce the buffer 
population to zero is six months and the maximum lifetime of an insect is three months, then the 
minimum buffer width would be 4 (6/3) = 8 km. 

 

12. Assessing eradication status and reinfestation 
The ability to determine that eradication has occurred in an eradication programme is 

paramount, as only a demonstration that the area is pest-free will allow the discontinuation of the 
control measures in that area. This, of course, presents a problem, as it is impossible  to  say 
absolutely for sure that there are no pest insects in a control area (Clift and Meats, 2004). The 
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answer to “Does a zero catch mean no flies in the area?” has been demonstrated to be “no” in many 
cases. The best one can do is to put a probability estimate on the statement. Thus, what follows uses 
probability models to estimate eradication status and reinfestation. 

12.1 Probability models 
The following probability models are based on trapping (or sampling in any other way) with 

zero results while assuming that there are insects present. The models then give the probability of a 
zero catch given that there are insects present, and then if the probability is sufficiently low, one 
can conclude that insects are not present. Two models are presented, one for  local  sampling 
involving one trap, and it is most suitable for spot infestations; the other model is for area-wide 
sampling, and is more suitable for an established pest that has existed over a considerable area. 
Both models involve attempting to sample a population that is close to extinction. Results from the 
two approaches should be fairly similar, because when residual population sizes are very low, the 
models converge (Barclay & Hargrove 2005; Barclay et al. 2005). 

For an insect to be caught on a given day the following conditions must be met: (i) There must be a 
trap operative in its vicinity, (ii) The insect must be active, (iii) The insect must succeed in finding 
the trap and being captured by it. 

 
12.1.1 Local Sampling with one or a few traps 

 

We deal with the probability of a zero catch in each of a number of traps (Barclay and 
Humble 2009). Single or a few traps may also be used to detect the presence of exotic pests (de 
Waard et al. 2009). Consider a single trap and the “circle” (area) of attraction around it, within 
which the probability of catching a given insect with a given trap during one activity period is σ, 
called the detectability; the probability of not catching a given insect is 1 – σ. In calculating 
detectability, one day constitutes one sampling period, since it represents one complete cycle of 
activity. Then if there are k insects in the “circle”, the mean number caught per activity period is 
kσ. Also, if there are k insects present and if catches are independent, then the conditional 
probability of catching no insects during an activity period (or sampling period) is: 

p(0|k) = (1 – σ)k (82) 

Since the largest probability of a zero catch is for k = 1 (i.e., for one insect), we assume that k = 1 
and the result will be a conservative test. Also, the probability of a zero catch given that there is one 
insect present is p(0) = 1 – σ, so the probability of a succession of n zero catches on n independent 
sampling occasions is 

P(0) = (1 – σ)n (83) 

and this is true for each trap. If the traps are of different types, then the detectability, σ, is specific 
to the trap type. The conservative approach is to calculate one probability for each trap and require 
that all of them satisfy the criterion for eradication to be declared before such a declaration should 
be made. This means that for each trap the number of trapping sessions needs to be large enough 
that (1 – σ)n is lower than the acceptable limit. For example, if the hypothesis that there are pests 
present is to be rejected at the α = 0.01 level and if σ was 0.1, then the number of trapping days, n, 
needs to be such that (1 – 0.1)n < 0.01. This can be found using the equation: n = log(0.01) / 
log(0.9) = -2.0 / -0.0458 = 43.7 ≈ 44 days.  More generally, the equation is: 
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n  =  log (α) / log(1- σ) (84) 

where α is the chosen rejection level. The base of the logarithms is immaterial, so long as both 
logarithms are of the same base. Once the rejection level has been chosen and the value of 
detectability, σ, is known, the required value of n can be easily computed. 

 
12.1.2 Sampling fraction of the population 

Each trap has an area of attraction such that within that small area, the probability of 
catching a given insect approximates the average detectability. If the number of traps is not 
sufficient to cover the whole area, so that the sum of the areas of attraction is less than the area to 
be evaluated for ‘pest-free’ status (called the ‘assessment region’), then one of two scenarios may 
occur. If the pests are sufficiently mobile to move around so that they move in and out of areas of 
attraction in their normal daily or weekly movements, then the detectability is simply reduced 
compared with the situation in which they are in the area of attraction all the time. Alternatively, 
the traps could be moved around from day to day or week to week so as to cover the assessment 
region, then the detectability would similarly be reduced. Assuming that every  insect  spends 
roughly the same amount of time in areas of attraction to traps, then the detectability will be 
reduced by the sampling fraction. If the sum of the areas of attraction to traps is a fraction f of the 
assessment region, then the average detectability will be σf. In that case, the criterion becomes: 

 

P(0) = (1 – σf)n   <  α (85) 
 

and solving for n:  
 
n = log (α) / log(1 – σ f) (86) 

 

Thus, if detectability was 0.1, the sampling fraction was 0.5, and we used a 1% confidence level 
(α), then n = log(0.01) / log(1 – 0.1(0.5)) = -2.0 / -0.0223 = 90 days. 

 
12.1.3 Area of attraction 

The size of the area of attraction will be crucial to the calculation of the sampling fraction, 
and this area may depend on weather, since odour plumes will vary in size with wind speed; they 
may also vary with topography and surrounding vegetation. The area of attraction will depend on 
many things and may have to be intuitively estimated in the absence of experimental data. It may 
vary from a few metres line of sight up to one or two kilometres, in the case of some moths. If the 
pest species is highly mobile, then dispersal may allow insects from far outside of the area of 
attraction to encounter traps. 

 
12.1.4 Trapping effectiveness 

Detectability refers to the probability of a trap catching an insect that happens to be within its 
area of attraction. This is difficult to measure, as one has to know how many insects are in the area 
of attraction (or are susceptible by virtue of dispersal) in order to calculate it. It can be done 
experimentally and has been done for tsetse using various kinds of traps (Barclay & Hargrove, 
2005; Table 3). However, detectability is either unknown or only known very approximately for 
many pest species and trap types. If it is not known, then some estimate must be made in order to 
supply the models with the required information. 
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12.1.5 Area-wide sampling of an established population 
Another approach is to consider area-wide sampling. The problem is to decide  what 

intensity and duration of sampling is required to interpret a series of zero catches as an indication of 
eradication at some specified level of probability. 

We define: 
 

A  Area sampled (km2), assumed closed to immigration and emigration of the species concerned. 
 

N  Total insects surviving the eradication attempt, assumed randomly distributed in A. 
 

σ  Trap efficiency; i. e. the conditional probability that an insect is caught by a given trap, given 
that there is only one trap present in the 1-km2 square containing the insect. 

 
S  Number of traps present in all of A. 

 
t Number of days for which each trap is operated. 

 
With these definitions Hargrove (2003) showed that the approximation to the probability that we 
capture at least one fly is: 

C(N , S,σ , t) = 1− exp(− 
StNσ 

) ≈ 
StNσ

 
A A 

(87) 

the approximation holds when the exponent is small, as will be the case in a population that is close 
to extinction. The result of interest is the function relating the probability (p(0|k>0)) of observing a 
sequence of zero results if in fact there are insects in the control area: 

p(0|k>0)  =  exp (-Stσλ) (88) 
where λ = N/A is the population density and other symbols are defined above. We would like to 
know when a series of zero catches is sufficiently long that we can reject the null hypothesis of the 
existence of insects at the assumed level. For example, if it is felt that the probability of a sequence 
of zero catches in the presence of insects is below a rejection level α = 0.01, then we require that: 

exp (-Stσλ)  <  0.01 (89) 
 

from which,  
 
-Stσλ <  ln (0.01) (90) 

 

where ln denotes the natural logarithm. One can solve for one of the variables in terms of the 
others that are known. For example, if t is determined and σ is known (see below) and λ can be 
guessed at, then: 

S >  4.605 / tσλ (91) 
and when this condition is met, then the required probability has been achieved. 

Note that the value of σ used here includes the detectability, the area of attraction and the 
sampling fraction that were used in the first method (equation (91)) and these do not need to be 
made explicit in this model. This allows fractional values of the numbers of insects present per unit 
area. If inequality (90) results in an impracticably high number of traps, then a different criterion 
may be considered (see below).  The value of S obtained from the inequality above assumes a risk 
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level of 0.01; that is, the probability of finding no insects when there are actually insects present 
must be less than 0.01 to justify concluding that there are no insects present. 

It must be emphasized that the number of traps (S) that is calculated is independent of the 
area of the region to be controlled (unless the area is very small). However, with a very large area, 
there is a greater probability that pockets exist that evaded control and these pockets must be 
identified and then treated accordingly. 

 
12.1.6 Incipient non-detectable populations 

If control has proceeded to the point that a very few insects are present, but at levels that 
cannot be detected by trapping, and if control is then terminated, then one would expect the 
population to increase due to natural reproduction. The question is, “how long would it take to 
allow this small population to increase to detectable levels?” Here it is assumed that surveillance 
trapping will continue until a decision of “pest-free status” has been taken. 

If population growth is in discrete time periods, as in seasonally reproducing insects, it can 
be modelled by a simple equation: 

Nt+1  =  a Nt (92) 

where a is the rate of increase each generation and Nt is the population size at generation t. Starting 
with an initial (very small) population of size N0 following termination of the eradication effort, the 
size of the population t generations later would be Nt = N0 a

t. If population growth is continuous, as 
it may be in tropical regions with minimal seasonality, then it can be modelled as: 

 

dN / dt = rN (93) 
 

and at any time t the population will be of a size N(t) = N0 exp(rt). The relationship between the 
parameters for equations (92) and (93) to yield comparable growth is that r = ln(a). Both of these 
models are deterministic and will yield only single values for a given time, t. 

 

When t is large enough that the population should have become easily detectable, and if 
continued trapping then still yields no pest insects, a declaration of “pest-free status” can be made. 
In calculating this critical value of t, allowance must be made for dormant or non-growing periods 
when equation (93) above does not apply. In addition, allowance of a comfortable buffer must be 
made, so that sufficient time must elapse for the population to be expected to be perhaps ten times 
the minimal detectable level before such a declaration should be made. Equations (92 and 93) are 
deterministic; events in nature, by contrast, involve random elements. This randomness can be due 
to variations in the environment or to demographic stochasticity by virtue of genetic or 
developmental variability. Reasonable lower limits of the growing population should therefore be 
used, rather than mean values, as are often used in calculations of ordinary population growth. 
Equations (92) and (93) will give mean values, but the variances and confidence limits are not 
readily available.  Barclay and Hargrove (2005) give an example of this method for tsetse flies. 
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Tables 
Table 1. Data on numbers of larvae found in each of 80 fruits, ten each from eight trees. 

 

Tree(i) 
Fruit(j) 

1 2 3 4 5 
Number of Larvae 

6 7 8   
 
 
 
 
 
 
 
 
 
 
 

Total 
824 

= 10.3 

1 21 5 14 9 31 16 17 4  

2 14 3 10 5 23 4 21 0  

3 0 0 9 11 14 11 13 0  

4 15 1 17 3 9 3 24 8  

5 18 6 5 15 27 19 19 7  

6 12 9 16 16 11 7 7 2  

7 2 5 7 4 27 6 16 1  

8 8 0 4 2 19 8 11 5  

9 19 1 8 0 13 13 13 6  

10 10 3 11 7 23 9 19 13  

Σ yij 119 33 101 72 197 96 160 46  

yi 11.9 3.3 10.1 7.2 19.7 9.6 16.0 4.6 ygm 
Σ y 2 1859 

ij 187 1197 786 4405 1162 2792 364  12752 
(Σ yij)2 14161 1089 10201 5184 33809 9216 25600 2116  678976 
Si

2 49.21 8.68 19.66 29.73 58.23 26.71 25.78 16.93   

 
 

Table 2.  Hypothetical frequencies of counts of numbers of insects occurring in traps or fruit. 
 

Insects per trap 
0 

Number of traps 
26 

1 7 
2 2 
3 13 
4 25 
5 6 
6 1 

Total traps = 80 

Table 3. Jolly-Seber estimates for the Blackkneed capsid (from Jolly 1965) 
 

Table 3a. Tabulations of the number caught in the ith sample last captured in the hth sample (mh,i). 
 

 

i 1 2 3 4 5 
 

ni 54 146 169 209 220 
h Ri 54 143 164 202 214 Totals  (rh) 

1   10 3 5 2 20 
2    34 18 8 60 
3     33 13 46 
4      30 30 

Total mi 0 10 37 56 53  
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Table 3b. Tabulations of the number caught in the ith sample last captured in or before the hth 

 sample (ch,i).         
h i 1 2 3 4 5 Totals (zi+1) 

1 10 3 5 2 10 z2 

2  37 23 10 33 z3 

3   56 23 23 z4 

4    53   

 
 

Table 3c. Population estimates from the data in tables 3a and 3b. 
 

i Mi Ni φ Bi Var(N) 

2 33.83 493.87 0.9270 251.45 
 

3 154.65 706.49 0.7487 261.91  

4 210.87 787.12 - -  

 
 

Table 4.  Computations to calculate regression coefficients for the data on egg mass density (E) 
and adult population density (T). Here x is the difference between the values of E(X) and its mean 
and y is the corresponding difference between T(Y) and its mean. 

 

E (X) T (Y) x y x2 xy 
 

105 1015 18.0 147.5 324 2655 
179 1853 92.0 985.5 8464 90666 
121 1237 34.0 369.5 1156 12563 
84 752 -3.0 -115.5 9 346.5 
19 234 -68.0 -633.5 4624 43078 
3 48 -84.0 -819.5 7056 68838 
49 467 -38.0 -400.5 1444 15219 
136 1334 49.0 466.5 2401 22858.5 

Means  87.0 867.5 0.0 0.0 25478 256224 
b  =  Σxy / Σx2   =  256224 / 25478 = 10.057. 

 
a  =  Y – bX = 867.5 – 10.057 (87.0) = -7.459. 

 

Then the estimation equation becomes 
 

Adult density =  a + b (egg mass density) = -7.459 + 10.057 (egg mass density), which is slightly 
biased because both variables are measured with some error, but still useful for our purposes. 

In this particular case, as a rule of thumb, one can simply multiply the egg mass density by ten to 
get a rough estimate of total adult density, as a is small. 
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Table 5. Hourly temperatures, degree-day contributions and heat accumulations above a threshold 
of 8 oC towards the calculation of a degree-day total for that day. 

 

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 
Temperature 6 6 6 5 5 6 7 7 8   9 9 10 11 12 12 11 10 10 10 9 9 8 7 6 
Deg-day contribution 0 0 0 0 0 0 0 0 0   1 1 2 3 4 4 3 2 2 2 1 1 0 0 0 
Heat accumulation 0  0  0  0  0  0  0  0  0   1 2 4 7   11  15  18  20  22  24  25  26  26  26  26 

 

The sum of the accumulated heat values is 26. The degree-day accumulation is then 26/24 = 1.08, 
i.e., and average of 1.08 degree-hours every hour. 

Table 6. Comparison of fruit-bud development in Red Delicious apples with phenology of female 
emergence, oviposition and egg hatch of Orthosia hibisci in relation to degree-days at Summerland, 
British Columbia, Canada, in 1992. 

 

 
 
 
Julian 

 
 
 

Degree 

Percentage of fruit buds at 
each stage of development 

Tight Pink Bloom Petal fall 

Cumulative percentage 
of various events. 

Emerge Ovipos   egg hatch 
Date days cluster       

99 143 60 40   97 85 10 
106 184 2 98   100 98 43 
116 252  40 60  100 100 90 
121 300   100  100 100 98 
126 353   95 5 100 100 100 

 
 

Table 7. Frequency distribution of the distances dispersed in nine days by a hypothetical insect. 
 

Distance Frequency Σ d2
 

0 13 0(13) = 0 
1 16 1(16) = 16 
2 14 4(14) = 56 
3 7 9(7) = 63 
4 4 16(4) = 64 
5 8 25(8) = 200 
6 3 36(3) = 108 
7 2 49(2) = 98 
8 0 64(0) = 0 
9 1 81(1) = 81 
10 0 100(0) = 0 

 N = 68 Σ d2   =  686 
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Table 8. Knipling´s basic Sterile Insect Technique (SIT) model1. 
 

 
 
 
 

G 

WILD WILD STERILE  
 

RATIO 

 
 

No. 

 
 

G 

 
 
 
 

PROGENY 

MALE MALE MALE 
  RELEASE 

NO WITH    

CONTROL CONTROL RATE REPRODUCTIVE 
INSECTS 

INCREASE 

STERILE WILD 

(M) (M1) (S*)  (λ) 

P 1,000,000 1,000,000 9,000,000 9 1 100,000 5 500,000 

F1 5,000,000 500,000 9,000,000 18 1 26,316 5 131,579 

F2 25,000,000 131,579 9,000,000 68.4 1 1,896 5 9,480 

F3 125,000,000 9,480 9,000,000 949.4 1 10 5 50 

F4 125,000,000 50 9,000,000 180458.9 1 0 5 0 

1Assumes sterile insects equally compete for mates, even distribution between wild and sterile 
insects, no immigration occurs, the only mortality factor is induction of sterility to wild population. 

Table A1. Chi Square (χ2) values for degrees of freedom (ν) of 1 to 100 and α = 0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For a test of the coefficient of dispersion (CD = s2 / x), the degrees of freedom for the associated 

chi square (χ2 = (ν s
2 / x), are ν, where ν = n-1, and n is the number of samples (e.g., quadrats) that 

were used in calculating the CD. 

ν χ
2

α, ν ν χ
2

α, ν ν χ
2

α, ν ν χ
2

α, ν ν χ
2

α, ν 

1 3.84 21 32.67 41 56.94 61 80.23 81 103.01 
2 5.99 22 33.92 42 58.12 62 81.38 82 104.14 
3 7.82 23 35.17 43 59.30 63 82.53 83 105.27 
4 9.49 24 36.42 44 60.48 64 83.67 84 106.39 
5 11.07 25 37.65 45 61.66 65 84.82 85 107.52 
6 12.59 26 38.89 46 62.83 66 85.97 86 108.65 
7 14.07 27 40.11 47 64.00 67 87.11 87 109.77 
8 15.51 28 41.34 48 65.17 68 88.25 88 110.90 
9 16.92 29 42.56 49 66.34 69 89.39 89 112.02 
10 18.31 30 43.77 50 67.51 70 90.53 90 113.15 
11 19.68 31 44.98 51 68.67 71 91.67 91 114.27 
12 21.03 32 46.19 52 69.83 72 92.81 92 115.39 
13 22.36 33 47.40 53 71.00 73 93.94 93 116.51 
14 23.69 34 48.60 54 72.15 74 95.08 94 117.63 
15 25.00 35 49.80 55 73.31 75 96.22 95 118.75 
16 26.30 36 51.00 56 74.47 76 97.35 96 119.87 
17 27.59 37 52.19 57 75.62 77 98.48 97 120.99 
18 28.87 38 53.38 58 76.79 78 99.62 98 122.11 
19 30.14 39 54.57 59 77.93 79 100.75 99 123.23 
20 31.41 40 55.76 60 79.08 80 101.88 100 124.34 
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Table A2. Proportions of area under a standard sine curve that are above the threshold value for 
development.  The first number of each pair (f) is the proportion that the threshdold is of the 
maximum temperature minus the minimum temperature, and the second number is the proportion 
 (p) of the area under the sine curve.   

f p f p f p f p f p 
 

 

0.00 

 

1.000 

 

0.20 

 

0.678 

 

0.40 

 

0.425 

 

0.60 

 

0.225 

 

0.80 

 

0.078 
0.01 0.981 0.21 0.664 0.41 0.414 0.61 0.216 0.81 0.072 
0.02 0.962 0.22 0.650 0.42 0.403 0.62 0.208 0.82 0.066 
0.03 0.944 0.23 0.636 0.43 0.392 0.63 0.199 0.83 0.061 
0.04 0.927 0.24 0.622 0.44 0.381 0.64 0.191 0.84 0.055 
0.05 0.910 0.25 0.609 0.45 0.370 0.65 0.183 0.85 0.050 
0.06 0.893 0.26 0.596 0.46 0.359 0.66 0.175 0.86 0.045 
0.07 0.876 0.27 0.583 0.47 0.349 0.67 0.167 0.87 0.040 
0.08 0.859 0.28 0.570 0.48 0.339 0.68 0.159 0.88 0.036 
0.09 0.843 0.29 0.557 0.49 0.329 0.69 0.152 0.89 0.031 
0.10 0.827 0.30 0.544 0.50 0.318 0.70 0.144 0.90 0.027 
0.11 0.811 0.31 0.532 0.51 0.309 0.71 0.137 0.91 0.023 
0.12 0.796 0.32 0.519 0.52 0.299 0.72 0.130 0.92 0.019 
0.13 0.780 0.33 0.507 0.53 0.289 0.73 0.123 0.93 0.016 
0.14 0.765 0.34 0.495 0.54 0.279 0.74 0.116 0.94 0.013 
0.15 0.750 0.35 0.483 0.55 0.270 0.75 0.109 0.95 0.010 
0.16 0.735 0.36 0.471 0.56 0.261 0.76 0.102 0.96 0.007 
0.17 0.721 0.37 0.459 0.57 0.252 0.77 0.096 0.97 0.004 
0.18 0.706 0.38 0.448 0.58 0.243 0.78 0.090 0.98 0.002 
0.19 0.692 0.39 0.436 0.59 0.234 0.79 0.084 0.99 0.001 
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Appendix 1. Overflooding Ratio for Age-Structured Populations with 

SIT 

 
We consider a population of a monogamous species with distinct egg, larval, pupal and adult 

stages; there is no density-dependent regulation and the time step is daily. This age structured 
population has equations for eggs (E), larvae (L), pupae (P) and the three wild adult components, 
virgin females (V), fertile-mated females (F) and males (M) and two sterile adult components, 
females mated to sterile males (G) and sterile males (N). In this model only males are released. The 
release of sterile females would complicate the model somewhat, but should not significantly alter 
the results. The relative competitive ability of sterile males is c, which must be estimated 
experimentally, or taken as 1.0 if this estimation has not been done. The virgin females are assumed 
to become receptive to male mating advances at age kv days, and all of age kv mate on that day. 
Fertile-mated females, Fkv+1,t+1 are the same individuals as those in Vkv,t. Here Ei,t is the number of 
eggs in age class i at time t; the sum for egg age-classes is taken from 1 to ke (the number of days 
until egg hatch); mx is the fecundity of adult age class x and hx is the proportion of eggs laid by 
females of age x that hatch. Also, Li,t, Pi,t, Vi,t, Fi,t and Mi,t are the numbers of larvae, pupae, virgin 
female adults, fertile-mated female adults and male adults in age class i at time t, respectively. The 
parameters ke, kl, kp, kv, kf and km are the numbers of days occupied at a given temperature by 
eggs, larvae, pupae, virgin females, fertile-mated females and males, respectively. The parameter si, 
is the natural daily survivorship of adult males and females of age i days and the counter, t, 
measures time in days. The equations of the growth model with SIT are shown in Table A3 below. 

 
 

In the equations in Table A3, the survivorships are all density-independent, and thus the 
total pre-adult survivorship can be compressed into one parameter, called γ, which is γ = (Π(kp) 

ri) 
(Π(kl) 

qi) and mean daily net fertility, taken over all adult age classes, called µ, can be calculated as 
the product of the age dependent fecundities and hatchabilities, so that µ = Σ mx hx lx/ Σ lx. The 
product of γ and µ is the quantity called mx in the equation for for E1 in the age structured equations 
in chapter 7. 
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Table A3. Equations of the age structured growth model with SIT 
 

 

Pre-adult  Stages 
Egg Stages: Larval Stages: Pupal Stages: 
E1,t+1 

E2,t+1 

E2,t+1 

⋅ 

= 
= 
= 

∑ kf 
Fi,t mx hx 

E1,t 

E2,t 

⋅ 

 
 
 

⋅ 

L1,t+1 

L2,t+1 

L3,t+1 

⋅ 

= 
= 
= 

Eke,t 

q1 L1,t 

q2 L2,t 

 
 
 

⋅ 

 
 
 

⋅ 

P1,t+1 

P2,t+1 

P3,t+1 

= 
= 
= 

qkl Lkl,t 

w1 P1,t 

w2 P2,t 

⋅  ⋅ ⋅ ⋅   ⋅ ⋅    

Eke,t+1 = Eke-1,t  Lkl,t+1 = qkl-1  Lkl-1,t   Pkp,t+1 = wkp-1  Pkp-1,t 

  Adult  Stages  

Virgin Females 
V1,t+1   =   wkp Pkp,t 

 Fertile-Mated Females 
F1,t+1 =  Πkv-1

si Vkv,t MT/(MT+NT)
1
 

Wild Males 
M1,t+1   =   wkp Pkp,t 

V2,t+1   =  s1 V1,t  F2,t+1   =  s1 F1,t M2,t+1   =  s1 M1,t 

V3,t+1   =  s2 V2,t  F3,t+1   =  s2 F2,t M3,t+1   =  s2 M2,t 

⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

⋅ ⋅ ⋅ ⋅ ⋅ ⋅  

Vkv,t+1   =  skv-1 Vkv-1,t  Fkf,t+1   =  skf-1 Fkf-1,t Mkm,t+1   =  skm-1 Mkm-1,t 

1 
MT  / (MT  + NT) is the fertility factor with SIT, in which MT  is the total number of fértiles males 

and NT is the total number of steriles males at a given time. 
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Equilibrium: 

The equilibrium values of eggs are found by dropping the time subscript, t: 

ET   =  E1 +  E2 + E3 +… + Eke  =   ke E1, =  ke ∑(kf) 
Fi mi hi   =  ke ∑(kf) µi Fi (A1) 

Here ke is the number of days required for egg hatch at the ambient temperature; variations 
in temperature will complicate this and are not considered here. The subscript T denotes the 
total for the life stage and ∑(kf) denotes the sum from i = 1 to kf of the expression to the 
right of the summation sign i.e., Fi mi hi, while µi is the product mi hi. The sum is taken over 
the kf mated female age classes. There is no mortality here since the only eggs we consider 
are those that will hatch. 

 

The equilibrium for the larvae is: 

LT   =  L1 +  q1 L1   +  q1 q2  L1   +  … +  (∏(kl-1)
qi) L1 

=  (1 + q1 + q1 q2  + … + (∏(kl-1)
qi) L1 

=   (1 + q1 + q1 q2  + … +  ∏(kl-1)
qi)  Eke (A2) 

in which ∏(kl-1)
qi is the product from i = 1 to kl-1 of the expression to the right of the 

product sign i.e., qi; kl is the number of larval age classes and the qi values are the age- 
specific larval survivorships, and they can be summed as shown when they are known; also 
from Table 1,  L1   =  Eke. 

The equilibrium for pupae is similarly 

PT   =  P1 +  w1 P1   +  w1 w2  P1   +  … +  (∏(kp-1) 
wi) P1 

=  (1 + w1 + w1 w2  + … +  ∏(kp-1) 
wi) P1 

=  (1 + w1 + w1 w2  + … +  ∏(kp-1) 
wi)  qkl Lkl 

=  (1 + w1 + w1 w2  + … +  ∏(kp-1) 
wi) (∏

(kl) 
qi) Eke. (A3) 

since P1   =  qkl Lkl    and also Lkl    =   L1 ∏
(kl-1) 

qi. The products, ∏(kp-1) 
wi, and ∏(kl) 

qi are 
taken over kp-1 pupal age classes and the kl larval age classes. 
The equilibria for virgin females, (V), fertile-mated females (F) and males (M) are 
similarly: 
VT   =  V1 + V2 + V3 + … + Vkv  = 
(1 + s1 + s1s2 +  s1s2s3   + … +  Π(kv-1) 

si) V1 

= (1 + s1 + s1s2 +  s1s2s3   + … +  Π(kv-1) 
si) wkp Pkp 

= (1 + s1 + s1s2 +  s1s2s3   + … +  Π(kv-1) 
si) (Π(kp) 

wi) P1 

= (1 + s1 + s1s2 +  s1s2s3   + … +  Π(kv-1) 
si) (Π(kp) 

wi) (Π
(kl) 

qi) Eke (A4) 
 

FT    =   F1 + F2   +  F3   + … +  Fkf  = 
(1 + s1 + s1s2 + s1s2 s3   + … + Π(kf-1) 

si) F1  = 
(1 + s1 + s1s2 + s1s2 s3  + … + Π(kf-1) 

si) skv  Vkv  = 



89  

 

(1 + s1 + s1s2 + s1s2 s3  +  … + Π(kf-1) 
si  ) (Π

(kv)
si) V1 = 

(1 + s1 + s1s2 +  … + Π(kf-1) 
si  ) ( Π

(kv)
si) (Π

(kp) 
wi) (Π

(kl) 
qi) Eke (A5) 

 
MT   =  M1 + M2 + M3 + … + Mkm = 
(1 + s1 + s1s2  +  s1s2s3   + … +  Π(km-1)

si) M1   = 
(1 + s1 + s1s2 +  s1s2s3   + … +  Π(km-1)

si)  wkp Pkp   = 
(1 + s1 + s1s2 +  s1s2s3   + … +  Π(km-1) 

si) (Π
(kp) 

wi) (Π
(kl) 

qi) Eke (A6) 
 

NT   =  N1 + N2 + N3 + … + Nkm = 
(1 + s1 + s1s2  +  s1s2s3   + … +  Π(km-1)

si) N1   = 
(1 + s1 + s1s2 +  s1s2s3   + … +  Π(km-1)

si)  wkp Pkp (A7) 
 

These equilibria are all in terms of Eke, the last egg stage before hatching, except for 
the eggs, which are in terms of FT. The evaluation of these equilibria requires considerable 
knowledge of the effects of age on the various survivorships. Life table analysis will be 
useful in providing some of this information, but the pre-adult survivorships, are available, 
can be subsumed by an overall measurement of pre-adult survivorship (γ). In that case, the 
above equilibria are modified, since γ  = (Π(kp) 

wi) (Π
(kl) 

qi), and so V1 = M1 = γ µ ∑ Fi, and 
F1 = V1 y

kv  Π(kv)
si . In addition, the various sums and products above, such as the one in eq. 

8, ((1 + s1 + s1s2 + s1s2s3   + … +  Π(kv-1) 
si) (Π(kp) 

wi) (Π(kl) 
qi)), can be evaluated when the 

constants are known, and thus the equations can be re-written as follows. 
 

The egg, larval and pupal equations can be compressed into ten equations, five for 
age class one and five for the total of each component, and including a delay in female 
mating of kv days. In addition, we introduce a simplification to enable the equations to be 
solved easily; we use a constant adult survivorship from one age class to another, so that si 

= s for all i. To do this, we assign the geometric mean of the adult survivorships to a single 
value, called s. Thus, s = (s1 s2 s3 s4 ...... sw) 

1/km    where km is the number of the last adult 
age class and the survivorships are all multiplied together. 

 
F1 = γµFT (s)

kv 
[zMT / (zMT + N)] 

G1 = γµFT (s)
kv 

[N / (zMT + N)] 
V1 = γµFT ;  hence Vkv = aFT (s)

kv (A8) 
M1 = γµFT 

N1 = r 
 

FT = F1 / (1 – s) 
GT = G1 / (1 – s) (A9) 
VT = V1 [1.0 - (s)

kv
] / (1 – s) 

MT = M1 / (1 – s) 
NT = r / (1 – s) 
Solving these for steady state, we obtain the critical release rate, r*: 
r* = γµFT [γµ (s)

kv 
– (1 – s)] / (1 – s) (A10) 

 
We  can  relate  this  to  standard  life  table  symbology  by  noting  that  if  lx   is  the 

survivorship from oviposition to time x, and if the preadult stages total e days, then the day 
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of emergence of adults is e, and the survivorship of a cohort from oviposition until adult 
emergence is le, the same as γ; also, the survivorships of the adult stages are le+1, le+2, le+3, 
… etc., which in the notation of the model in equations A5 are V1, V1*s1, V1*s1*s2, etc. In 
the symbology used above, survivorships of the adult stages are si for the survivorship from 
the ith adult age to the i+1st adult age. Thus le+1 = γ s1 = s1 le, le+2 = γ s1 s2, = s2 le+1, le+3 = γ 
s1 s2 s3   =  s3 le+2 … etc. , so that 

γ Σ (kf-1)    Π (j) 
si    = γ [s1  + s1  s2  + s1  s2  s3  + … + s1  s2  ⋅⋅⋅⋅ skf-1  ]  =  le+1  +le+2  +le+3  + … + 

le+1+kf-1 so that the equation for F1 in eq. (A8) can be written as: 

F1 = V1 ( Π (kv) 
si) MT/(MT+NT) (A11) 

=   ( Π (kv) 
si) MT/(MT+NT)  Π(kv-1) 

si)  wkp Pkp 

=  (Π (kv) 
si) MT/(MT+NT) (Π(kv-1) 

si) ( Π (kp) 
wi) ) ( Π (kl) 

qi) (Σ 
(kv-1) Π (kv-1) 

si) Eke 

= γ (MT/(MT+NT)) (Π (kv) 
si) (Π

(kv-1) 
si) (Σ 

(kv-1) Π (kv-1) 
si)  (∑ kf 

F1 (Π (kv) 
si) mx hx) 

=  γ (MT/(MT+NT)) (Π (kv) 
si) (Π

(kv-1) 
si) (Σ 

(kv-1) Π (kv-1) 
si) F1 (∑ kf   

(Π (i) 
si) mx hx) 

 

An example is shown for the data for Bactrocera dorsalis presented by Vargas (1984). 
For the survivorships shown (graphically) and the age specific fecunditites and egg 
hatchabilities, the total pre-adult survivorship was γ = 0.63 and the mean daily fertility per 
fly-day was µ = 8.76 (Barclay & Hendrichs 2014). Also, the delay in female mating was six 
days; the adult daily survivorship is taken as the 6th root of s1 s2 s3 s4 s5 s6 =, and kv = 6, so 
the critical value of sterile releases, r* is r* = γµFT [γµ (s)

kv – (1 – s)] / (1 – s) 
= (0.63)(8.76) FT [(0.63)(8.76) (0.81) – 0.03] / 0.03 = 817 FT. 

 
We need to know the equilibrium wild male population in order to derive the release 

ratio and the over-flooding ratio. From eqs. (A8) and (A9), we have MT = M1 / (1 – s) = 
γµFT / (1-s), and s has the value of 0.961. Thus the total number of wild males is: 

MT = γµFT / (1-s) = (0.63) (8.76) FT / (1-0.961) = 141.5 FT 

Thus, the release ratio, ρ, is r* / MT (A12) 

= 817 FT / 141.5 FT = 5.77 

and  the  daily  release  rate  needs  to  be  greater  than  5.77  times  the  existing  wild  male 
population at equilibrium. 

The over-flooding ratio is the sterile male population, NT / MT = φ, and so 

φ = [r* / (1-s)] / [γµFT / (1-s)] = r* / γµFT (A13) 
and in the present example,  φ =  817 FT / 5.52 FT  = 148.0 

 
This value is quite large, but the data are from a laboratory culture of insects under ideal 

conditions, and as such are probably the maximum possible for the species. Data from the 
field would give much more realistic estimates of the critical daily release rates. Also, if the 
survivorship of sterile males were less than that of wild males, then these calculations 
would have to take that into account, and both ratios would be larger. 
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Appendix 2. Equations of SIT Models 
Fertility factor with sterile releases:  M / (S+M) 

 

Sterility factor:  S / (S+M) 

Knipling’s original model:  Ft+1 = λFt Mt / (S+Mt) 
 

Critical sterile release rate:  S* = M (λ-1) 
Overflooding ratio:  S* / M  >  λ-1 

Unequal sterile male competitive ability:  Ft+1 = λFt Mt / (cS+Mt) 

Critical release rate:  :  S* = M (λ-1) / c 
Overflooding ratio:  S* / M  >  (λ-1) / c 

 
Residual fertility of irradiated males:  Ft+1 = λFt (Mt +qS) / (S+Mt) 
(Modified by the residual fertility factor) 

 
Density-dependent SIT model:  Ft+1 = λFt  exp [-b(F+M+S)] Mt / (S+Mt) 
(Normal growth modified by the density-dependent factor: exp [-b(F+M+S)]) 

 
 

Immigration of females from outside the control area 

Virgin females:  Ft+1 = λ(Ft+ I) (Ft+I) / (Ft+I+S)) 
where I is the number of immigrants per unit time (Prout 1978). This model has two 
positive roots, and zero is not a root. 

Mated  females:  Ft+1 = λFt
2 / (Ft+S) + λI 

This model also has two positive roots, and zero is not a root. 



Appendix 3. Software

Some computer software that might be useful to program managers and others involved in mathematical aspects of an SIT program is 
listed in this Appendix. We note that computer software changes and becomes out of date quite quickly, and that better tools are likely 
to become available. We have mostly focused on specialized software relating to the topic at hand. In any case this list should be 
considered a starting point and not a comprehensive resource on software relating to topics in this book. 

Name 

Program 
MARK 

Curacao 

MED-FOES 

Populus 
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Summary Author/Maintai- 
ner 

Platform Version/Date Sec- 
tion 

URL 

MRR data 
analysis 

G. White MS 
Windows 

4.3/02-2006 4.1 http://warnercnr.colostate.edu/~gwhite/ma 
rk/mark.htm 

SIT simulation B. Ticknor MS 
Windows 

2.2/1990 7, 10 http://ipmworld.umn.edu/chapters/SirSim 
ul.htm 

Agent-Based 
Simulation of 
Invasive Pest 
Insects 

N.C. Manoukis MS 
Windows, 
Mac OS X, 
Linux 

0.42/04-2013 6.3, 
12 

http://medfoes.sourceforge.net/ 

Simulation 
models of 
biology and 
evolutionary 
ecology 

D.N. Alstad MS 
Windows, 
Mac OS X, 
Linux 

5.5/2007 6, 8 http://www.cbs.umn.edu/populus 



Visual 
Sampling Plan 

CLIMEX 

FAO Locust 
Watch 
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Sampling plan 
design 

B. Pulsipher/J.
Wilson

MS 
Windows 

6.3/2013 3 http://vsp.pnnl.gov/ 

Assessment of 
the risks posed 
by the 
introduction of 
different 
organisms 

Creative 
Research 
Systems 

MS 
Windows 

3.0/2004 5 http://www.climatemodel.com/climex.htm 

Locust situation 
updates and 
predictions 

S. Rossetti and
M. Balestra

NA 2009 5 http://www.fao.org/ag/locusts/ 
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Appendix 4. Glossary

Algorithm – a mathematical or numerical method of working out some problem or result. 

Calculus – a branch of mathematics invented by Newton and Leibnitz that deals with 
continuous rates of change of variables with infinitely small time steps. 

Differential equation – an equation involving calculus 

Difference equation – an equation of rates of change involving finite time steps. 

Competition coefficient – a number that represents the mating ability of sterile males as 
compared with wild males. Zero means no mating ability; 1.0 means the same ability as 
wild males. 

Density dependent – the operation of some mortality or fertility factor that changes its 
effect (per insect) with population density. 

Density independent – the operation of some mortality or fertility factor that does not 
change its effect per insect with population density. 

Dispersal – the net movement of individual animals other than just minor local daily 
movements that return to the same place. 

Diffusion equation – a differential equation that describes the net movement of individuals 
over time. 

Emigration – net movement of individuals out of a population. 

Immigration – net movement of individuals into a population. 

Dispersion – spatial arrangement of individuals in a population. 

Regular dispersion – arrangement in which individuals are evenly spaced. 

Random dispersion – arrangement in which the spacing of individuals is independent of 
all other individuals in the population 

Clumped (aggregated) dispersion – arrangement in which individuals occur in groups, or 
clumps. 

Probability distribution – a numerical or graphic representation of the frequency of 
occurrences of individuals in a population. 

Discrete distribution – a distribution in which frequencies of individuals are tabulated by 
frequencies of 0, 1, 2, … etc. occurrences. 

Continuous distribution – a distribution in which relative frequencies of individuals are 
shown according to some continuous variable, such as height, weight, etc. 

Sample distribution – the distribution obtained from a number of samples, such as the 
numbers of insects occurring on sampled branches 



 
 

Sampling distribution – a probability distribution that approximately describes the results 
of sampling; these are mathematical distributions such as Poisson, Negative Binomial, 
Normal, etc. 

Equilibrium – a configuration of population numbers that remains the same over time. The 
term equilibrium often implies that the configuration is stable and will return to its 
equilibrium value if the population is disturbed. 

Steady state – another name for an equilibrium, but without any implication regarding 
stability. 

Lek – a social gathering of animals for the purpose of mating, migration, etc. 

Lekking behavior – the grouping of animals into leks. 
 

Model – a theoretical representation of reality by ideas, mathematics, graphs, etc. 
 

Mathematical model – the representation of reality (of population sizes, etc.) by means of 
mathematical equations or computer programs. 

Percentage – represents the part of a group of items scaled to be out of 100. Thus, 10% is 
one tenth of the total. 

Proportion – represents the part of a group of items scaled to be out of 1.0. Thus a 
proportion of 0.5 represents half of the total. 

Probability – a numerical representation of the likelihood of occurrence of a particular 
event. Thus, a probability of 0.3 means that the event is expected to occur in about 30% of 
possible times. For example, in tossing a fair coin, heads is expected to occur in about half 
of the tosses, so that the probability is assigned to be 0.5. 

Population – the total number of individuals of a given species that are within an area of 
interest. This is generally taken to be the total number of individuals that are capable of 
mating with each other. Thus, individuals from different populations are normally 
prevented from mating with each other by geographic separation. 

Sample – a group of individuals that are captured for the purpose of obtaining information 
from them. This group in some way represents the population. 

Residual fertility – fertility that persists following sterilization of a group of insects. If two 
percent of the insects remain fertile following irradiation, then the residual fertility is shown 
as 0.02 (a proportion), or 2% (a percentage). 
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This guideline attempts to assist managers in the use of mathematics in area-wide Integrated 
Pest Management (AW-IPM) programmes using the Sterile Insect Technique (SIT). It describes 
mathematical tools that can be used at different stages of suppression/eradication programmes. For 
instance, it provides simple methods for calculating the various quantities of sterile insects required 
in the intervention area so that more realistic sterile: fertile rates to suppress pest populations can 
be achieved. The calculations, for the most part, only involve high school mathematics and can be 
done easily with small portable computers or calculators.

The guideline is intended to be a reference book, to be consulted when necessary. As such, any 
particular AW-IPM programme using the SIT will probably only need certain sections, and much of 
the book can be ignored if that is the case.

SIT have produced over many years a vast amount of every-day data from the field operations and 
from the mass rearing facility and packing and sterile insect releasing centres. With the help of this 
guideline, that information can be used to develop predictive models for their particular conditions 
to better plan control measures.
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