

Assessment of Occupational Exposure due to External Radiation Sources

Passive Dosimetry Techniques

Passive integrating dosimeters

- Photographic film
- Luminescence
 - Thermoluminescence
 - Optically stimulated
 luminescence
 - Radiophotoluminescence
- Semiconductors: direct ion storage

A wide range of passive dosimeter designs have been developed...

Photographic Film Dosimetry

Photographic film: basic principles

- Film emulsion is made of AgBr crystals suspended in a gelatinous medium
- A thin emulsion layer is coated on a plastic base
- Ionizing radiation interacts with emulsion grains to produce a latent image
- In development, silver ions in the latent image produce permanent blackening
- Blackening is measured with a densitometer
- Degree of blackening is a function of film type, developing process, temperature, and radiation type and energy

Film has a strong photon energy dependence

Energy Dependence of Radiographic Film

Film has a strong photon energy dependence

Photographic film: energy dependence

- Film badges are not tissue equivalent:
 - Need for multiple element dosimeters
 - Need for algorithm
- Compensation for energy dependence of the film dosimeter is achieved either by the use of one or more filters
- Especially lower energy overresponse needs to be compensated by introducing filters:
 - Multiple filters (e.g. Cu, plastic and open window) are used for lower energy photons
- Multiple element dosimeter can have advantages:
 - Type and dose of incident radiation can be estimated from the ratio of responses behind different filters

Typical design of film dosimeter

A - Plastic filterB to E - Metallic filtersO - Open window

Photographic film: not linear

- Optical density does not vary linearly with dose
- At higher doses, a reversal of optical density solarization takes place

• Linear combination of the responses behind suitable filters can be used to determine the dose

Typical photographic film calibration curve

Films with different sensitivities extend the measurable dose range of the film badge

H_p(10) - mSv

Photographic film: calibration

- New calibrations are necessary for each new film batch, or when the developing process changes
- Operational films are often calibrated by using identical standard films irradiated to known doses and processing them simultaneously with the operational dosimeters
- Calibrations at doses that cover the full range for which the dosimeter is used
- Film badges are used for issue periods up to one month
 - For longer periods, fading is a problem
- Important influence of temperature and humidity

For longer periods, fading is a problem

Film dosimeters are less and less used

- Film dosimetry can be economical depending upon the degree of automation
- Now on rapid decline
 - Less manufacturers
 - Competition of novel dosimetry techniques

Luminescence

Luminescence: creation of light

- Electrons in a material have a specific energy level
 - Only discrete energy levels or energy band are possible, dependent on material
- By energy absorption they can jump to a higher energy level
- After that, they can fall down to a lower level
- Going to lower level can be accompanied by light emission

Different types of luminescence:

- Chemiluminescence, the emission of light as a result of a chemical reaction
 - Bioluminescence, electrochemiluminescence, lyoluminescence, candoluminescence
- Crystalloluminescence, produced during crystallization
- Electroluminescence, a result of an electric current passed through a substance
- Mechanoluminescence, a result of a mechanical action on a solid
 - Triboluminescence, fractoluminescence, piezoluminescence, sonoluminescence

Different types of luminescence:

- Photoluminescence, a result of absorption of photons
 - Fluorescence: typical lifetime: nanoseconds
 - Phosphorescence: typical lifetime: milliseconds to hours
- Radioluminescence, a result of bombardment by ionizing radiation
- Thermoluminescence, the re-emission of absorbed energy when a substance is heated
 - Cryoluminescence (when it is cooled)

Conversion of light to electrical current/pulses: photomultiplier

- Photon is converted to electron at the photocathode
- One electron creates an electron avalanche in the dynodes
- · Leads to measurable pulse or current at the anode

Detecting radiation with luminescence

- Radiation can be converted to light through radioluminescence
- Light can easly be converted to electrical current/pulses
- Electrical current gives information on radiation field
- 4 types of luminescent radiation detectors
 - Scintillation detectors (not for passive dosimeters)
 - Thermoluminescent detectors (TL)
 - Optically stimulated luminescent detectors (OSL)
 - Radiophotoluminescent detectors (RPL)

Thermoluminescence

Simplified thermoluminescent process

Glow curves

- The result of a thermoluminescent measurement is a glow curve
- Physical process can be simplistically modelled for one trap by:

 $I(t) = -dn/dt = n \cdot s \exp(-E/k T)$

- Where:
 - n= number of captured electrons
 - s= probability of electron escape
 - E= energy needed for thermal "untrapping"
 - T= temperature in K
 - k= Boltzmann constant
- This formula leads to a specific shape of the signal with increasing temperature
- In reality: much more complicated because of many traps and recombination centres
 - Glow curve will show different peaks

Process of thermoluminescent dosimetry

- Annealing (=heating) of detector to remove all previous signals
- Expose dosimeter to ionising radiation
- Read out of dosimeter by heating the detector and measuring the light output in the form of a glow curve
- Analyse the measurement result, taking into account the calibration, background, fading, etc...
- Possibility to reuse the detector by annealing the detector

Process of thermoluminescent dosimetry

Thermoluminescent reader

IAEA

- Heating system: to heat the detectors
- Heating can be done with different methods:
 - Planchet heating
 - Hot anvil
 - Hot gas (mostly inert nitrogen)
 - Infrared
 - Laser heating
- Light detection system: mostly photomultiplier tube (PMT)
- Read-out unit: to integrate the current from the PMT

TLD is attractive for radiation protection dosimetry

- Easy process of read-out
- Some TL materials are nearly tissue-equivalent
- TL offers high sensitivity, accuracy, low detection limit and linearity over a wide dose range
- Many TL materials are commercially available as small solid detectors adaptable for automatic processing
- Particularly suited to eye lens and extremity dosimetry

TLD materials

- Needed to be a good dosimetric TL material:
 - Many capture centres
 - Low fading (thermal nor optical)
 - Tissue equivalent
 - Suitable emission wave length
 - Constant sensitivity
 - Independence of dose rate

• Li-based TLD's most used because of their near tissue equivalence

General characteristics of commercially available TLDs

TLD type	Effective atomic number	Main peak (°C)	Emission maximum (nm)	Relative sensitivity	Fading (at 25 °C)
	∠ _{eff}				
LiF:Ti,Mg	8.3	200	400	1	5%/year
LiF:Na,Mg	8.3	200	400	1	5%/year
LiF:Mg,Cu,P	8.3	210	400	25	5%/year
Li ₂ B ₄ O ₇ :Mn	7.3	220	605	0.20	4%/month
Li ₂ B ₄ O ₇ :Cu months	7.3	205	368	2	10%/2
MgB ₄ O ₇ :Dy	8.4	190	490	10	4%/month
BeO	7.1	190	200-400	0.20	8%/2 months
CaSO ₄ :Dy	14.5	220	480-570	30	1%/2 months
CaSO ₄ :Tm months	14.5	220	452	30	1-2%/2
CaF ₂ :Mn	16.3	260	500	5	16%/2 weeks
CaF_2 (natural)	16.3	260	380	23	very slight
CaF ₂ :Dy	16.3	215	480-570	15	8%/ months
AI_2O_3	10.2	360	699	4	5%/2 weeks

Energy dependence of TL materials

Supralinearity

- Some TL materials show a specific feature at high doses: supralinearity
 - If dose doubles, signal more than doubles
 - Complex phenomena of competing traps
- Important for frequently used material LiF:Mg,Ti
 - Only for doses above several Gy/Sv
 - Need to correct in case of accidents

Thermoluminescent fading

- Unintentional release of trapped electrons before readout is called fading
- Any storage of detectors leads to fading
- There is fading before and after the irradiation
 - Before irradiation there is fading of electron traps
 - After irradiation there is fading of electrons in traps
- Probability is function of temperature: fading is higher at higher temperatures
- Low temperature peaks show more fading, high temperature peaks are more stable
- Fading depends on detector material
- Fading needs to be limited for occupational dosimetry:
 - Possibly also need to correct for fading

Glowcurve deconvolution

- Glowcurve consists of different peaks
 - From different trap centres
 - Each peak has different characteristics
- Glowcurve deconvolution = splitting up the different peaks
 - Can help to improve dosimetric characteristics
 - Improve precision at low dose: better discrimination with inherent background
 - Fading correction: removal of less stable peaks through preheat (=heating at lower temperatures before actual reading)

Time-temperature profile (TTP)

Time-temperature profile and glow curve for LiF:Mg,Ti freshly exposed to 1 Gy

Example: glowcurve deconvolution of LiF:Mg,Ti

Glow curves for various TL phosphors

Result of preheat on low temperature peaks

Pros and cons: thermoluminescent dosimetry

Advantages

- Very compact
- Reusable
- High sensitivity
- Near tissue equivalence
- Disadvantages
 - Only one read out is possible
 - Reproducible and controlled heating is a challenge
 - Fading (depending on material and preheat)
- Often used in occupational dosimetry: different commercial systems available

Harshaw TL system

- Different configurations in badge possible (2 or 4 elements)
- LiF:Mg,Ti detectors (also possible with LiF:Mg,Cu,P)
- Readers of different size and capacity

Panasonic TL system

- Badge consists of
 - 2 CaSO₄:Tm detectors
 - High sensitivity but not tissue equivalent
 - 2 Li₂B₄O₇:Cu detectors
 - Near tissue equivalent
- Branching algorithm to calculate H_p(10)

Rados TL system

- Badge consists of 2 or 4 elements
- LiF:Mg,Ti or LiF:Mg,Cu,P detectors
- Different filters possible

Optically Stimulated Luminescence

Simplified optically stimulated luminescence process

Process of optically stimulated luminescent (OSL) dosimetry

- Reset/annealing (=illumination) of detector to remove all previous signals
- Expose dosimeter to ionising radiation
- Read out of dosimeter by illuminating the detector and measuring the light output
 - Stimulation wavelength is different from emission wavelength
- Analyse the measurement result, taking into account the calibration, background, etc...
- Possibility of multiple reads of detector
 - If only part of the signal is removed by illumination
- Possibility to reuse the detector by resetting the detector

Process of OSL dosimetry

OSLD reader

- No heating system needed
- Illumination can be done with LED's
 - Wavelengths dependent on material and trap centre
 - Most OSL is done with pulsed stimulation
 - Each luminescence accumulation period ranges from 25 msec to 100 msec
 - Different accumulation periods per dose measurement
- Series of filters to discriminate between stimulation and emission light
- Light detection system: mostly photomultiplier tube (PMT)
- Read-out unit: to integrate the current from the PMT
- Optical energy releases a small fraction of the trapped charge carriers created during exposure

OSLD materials

- Examples:
 - Al₂O₃:C
 - Halides: KCI, KBr, NaCl, RbI, CaF₂
 - Sulfates: MgSO4, CaSO4
 - Sulfides: MgS, SrS, CaS, BaS
 - Oxides: BeO, SiO₂
- Only Al₂O₃:C and BeO have been developed into commercial systems

OSLD materials

- Al₂O₃:C : commercialized by Landauer
 - Al₂O₃:C powder is mixed with a polyester binder and coated onto a roll of clear polystyrene film (Luxel)
 - Not tissue equivalent: multiple element dosimeter needed + algorithm
- The wavelength of the stimulation beam is 532 nm
- Blue luminescence has a peak wavelength of 420 nm

OSLD materials

- BeO : commercialized by Dosimetrics
 - Near tissue equivalent
 - Toxic
- The wavelength of the stimulation beam is around 450 nm
- The wavelength of the emission is around 270 nm

OSL fading and bleaching

- Any storage of detectors leads to fading
 - Unintentional release of trapped electrons before readout
- Bleaching occurs by unintended exposure to light
- Probability is function of temperature: fading is higher at higher temperatures
- Fading depends on detector material
- Fading needs to be limited for occupational dosimetry:
 - Possibly also need to correct for fading

Pros and cons: optically stimulated luminescent dosimetry

IAEA

- Advantages
 - Very compact
 - Reusable
 - High sensitivity
 - Fast and controllable read out
 - Multiple read outs are possible
 - Near tissue equivalent (BeO)
- Disadvantages
 - Not tissue equivalent (Al₂O₃:C)
 - Need to be shielded from environmental light
- Increasingly used in occupational dosimetry

Landauer OSL system

- Badge consists of 4 elements of Al₂O₃:C behind different filters ٠
- Algorithm to calculate $H_p(0.07)$ and $H_p(10)$
- Readers of different sizes and capacities

Dosimetrics OSL system

- Badge consists of BeO material
- Different badge layout and number of elements possible

Combined TL/OSL system

 Systems that give combined TL and OSL read-out possibilities have also been developed: Riso, Freiburg instruments

Radiophotoluminescence

Simplified radiophotoluminescent process

Occupational dosimetry with radiophotoluminescent (RPL) dosimetry

- Photoluminescence is based on formation of induced luminescent centers in silver doped phosphate glass
 - Electrons can be excited to these luminescent centres by ionizing radiation
 - Trapped electrons can be excited within the luminescent centers by UV light
- When exposed to UV light, fluorescent light of a larger wave length is emitted with intensity linearly related to absorbed dose
- Centers are not destroyed by normal read-out and are stable
- Dose information can be obtained at any time during long-term dose accumulation
- Because of the high Z value of the glass materials, energy compensation filters are required
- Annealing (heating) is needed to reuse detector

RPL is attractive for radiation protection dosimetry

- Commercial system with silver doped phosphate glass
- Easy and fast process of read-out
- With suitable filters and algorithm: flat energy response
- Good accuracy
- Negligible fading
- Can be remeasured
- Good reproducibility and constant sensitivity

Pros and cons: radiophotoluminescent dosimetry

- Advantages
 - Compact
 - Reusable
 - Fast and controllable read out
 - Multiple read outs are possible, no signal loss
 - No need to shield from environmental light
- Disadvantages
 - Not tissue equivalent
 - High temperature anneal needed for reuse

Chiyoda Technology RPL system

- Badge consists of phosphate glass material
- Different elements behind different filters with an algorithm

Semi conductor: direct ion storage

Basic features of Direct Ion Storage (DIS) systems

- Based on semiconductor materials
- Passive system:
 - no direct reading
 - no alarm function
- Commercially available as DIS dosimeter
 - Read-out with DBR reader
 - Exchange through dosimetry service
- Commercially available as Instadose dosimeter
 - No more monthly exchange
 - Wireless transfer of read-out data

Principle of operation

- Radiation creates charges in small ionisation chamber above the detector
- Charges are collected on floating gate of Mosfet
- Measurement of voltage gives indication of dose
- Measurement is non destructive

DIS dosimeter

- Passive electronic system with Direct Ion Storage (DIS)
- Small and rugged devices for personal dosimetry
- Several chambers to measure $H_p(10)$ and $H_p(0.07)$ for photon and beta radiation
- High sensitivity chamber for low doses
- Low and medium sensitivity chambers for high doses

Basic features of DIS dosimeter

- Nondestructive readout: can be read out several times
- Hard reset is possible by reverse current and annealing
 - When sensitive chamber is saturated
- Passive operation
- Small dimensions
- Works in specific temperature range
 - Not suited for high or low temperatures

DIS reader

- Reader is small and easy in use
- Several read-outs possible
- In use in several countries as official dosimeter
- Suitable for data networks

Instadose dosimeter ID

- Newest development based on DIS technology: several DIS chambers incorporated in dosimeter
- Exclusively distributed by Mirion
- Several versions:
 - ID, ID+: only $H_p(10)$
 - ID2: includes also H_p(0,07) chamber

Basic features of Instadose

- Voltage measurement is done in dosimeter
- Measurement results are sent by bluetooth to receptor device and transferred to dosimetry service database for processing
 - Receptor device can be mobile phone, instalink station (internet), ...
- Same radiological characteristics as DIS
 - Sufficient energy and angular dependence
 - Operational in specific temperature range (15-30°C)

Specificities of Instadose

- No more monthly exchange:
 - dosimeter can stay with wearer
 - Exchange when dosimeter is full (100 mSv)
 - Exchange when recalibration is needed
- Read out is automatic
- Read-out frequency can be programmed
- Extra read outs are possible by push on button
- Dose measurements stored in dosimeter, even without transfer possibilities
- Change of wearer is possible at any time
- Background still needs to be subtracted
- Detection limit can be higher than other techniques