

Radiation in dental practice

Reinhilde Jacobs

iadmfr.one

About Us

Join Us Congress 🗸

Publications

More 🗸

ABOUT US

IAEA RESOURCES & EDUCATION

Widely known as the world's "Atoms for Peace and Development" organization within the United Nations family, the IAEA is the international center for cooperation in the nuclear field. The Agency works with its Member States and multiple partners worldwide to promote the safe, secure, and peaceful use of nuclear technologies.

For more information visit the IAEA official website here.

Education V

WEBINARS

Joint IADMFR-IAEA webinars

Watch the free webinars on the radiation protection topics in medical uses of ionizing radiation, and take the opportunity to learn from the world's leading radiation protection experts.

Sarah Baatout What can radiobiology bring to the dentomaxillofacial radiology? a radiation protection perspective

PUBLICATIONS

Ruben Pauwels Optimization of dental cone-beam computed tomography exposures: a practical guide

Eva Levring Jäghagen Improved justification and optimization of dental 2D and 3D imaging through education and training Radiation Protection and Safety in Medical Uses of Ionizing Radiation

Radiation Protection in Dental Radiology

IAEA publications

FAQ RADIOPROTECTION DENTISTRY

Keith Horner Justification of X-ray examinations in dentistry

CBCT 3/4 virtual planning 1/4 diagnosis

ALADA IP: indication oriented & patient specific imaging

INTERNATIONAL JOURNAL OF PAEDIATRIC DENTISTRY

LETTER TO THE EDITOR

ALADAIP, beyond ALARA and towards personalized optimization for paediatric cone-beam CT

Anne Caroline Oenning, Reinhilde Jacobs, Benjamin Salmon 🔀, the DIMITRA Research Group (http://www.dimitra.be)

First published: 12 April 2021 | https://doi.org/10.1111/ipd.12797 | Citations: 1

Dentomaxillofacial Radiology (2020) 49, 20200145 © 2020 The Authors. Published by the British Institute of Radiology

birpublications.org/dmfr

DMFR 50TH ANNIVERSARY: REVIEW ARTICLE

Cone beam computed tomography in dentomaxillofacial radiology: a two-decade overview

^{1,2}Hugo Gaêta-Araujo, ¹Tamara Alzoubi, ¹Karla de Faria Vasconcelos, ^{1,3}Kaan Orhan, ^{4,5}Ruben Pauwels, ⁶Jan W Casselman and ^{1,7}Reinhilde Jacobs

280 CBCT models

CBCT ≠ CBCT

CBCT ≠ CBCT

Liang et al 2010, Ezeldeen et al 2017, Oenning et al 2019

1CBCT ≠ 50x 😧

DIMITRA

Dentomaxillofacial paediatric imaging: an investigation towards low dose radiation induced risks

Indication specific optimization

38 µSv

166 µSv

Clinical Research

As Low Dose as Sufficient Quality: Optimization of Cone-beam Computed Tomographic Scanning Protocol for Tooth Autotransplantation Planning and Follow-up in Children

Mostafa EzEldeen, DDS, MScD, *[†] Andreas Stratis, MSc, * Wim Coucke, PbD, [‡] Marina Codari, MSc, *^{\$} Constantinus Politis, MD, DDS, MHA, MM, PbD, * and Reinhilde Jacobs, DDS, PbD, MSc, Dr bc*

9,5 μSv

Age (years)	Dose	Time of sampling	Tissue examined	Tissue used	Biological effects	References
24 ± 1.023	21.4 μSv	Before and 10 days after examination	Oral cavity	Exfoliated oral mucosa cells	No induction of N, and cytotoxicity (pyknosis, karyolysis). Significant induction of karyorrhexis.	Cerqueira <i>et al.</i> (2004) ¹¹²
20 subjects ≤ 22.520 subjects > 22.5	21.4 µSv			keratinized mucosa of theupper dental arch	Significant induction of MN	Cerqueira <i>et al.</i> (2008) ¹¹³
7.70 ± 1.50	0.08 Roentgen(Entrance dose)			Exfoliated oral mucosa cells	No induction of MN, and cytotoxicity (pyknosis, karyolysis). Significant induction of karyorrhexis.	Angelieri <i>et al.</i> (2007) ¹¹⁴
18-40	0.057 mSv(Average dose)			Cells of the lateral border of the tongue	No induction of MN, but increased cytotoxicity (pyknosis, karyolysis, karyorrhexis). The number of karyorrhexis	Da Silva <i>et al.</i> (2007) ¹¹⁵

Dentomaxillofacial Radiology (2021) 50, 20210153

© 2021 The Authors. Published by the British Institute of Radiology under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License http://creativecommons.org/licenses/ by-nc/4.0/, which permits unrestricted non-commercial reuse, provided the original author and source are credited.

birpublications.org/dmfr

DMFR 50TH ANNIVERSARY: REVIEW ARTICLE

Radiobiological risks following dentomaxillofacial imaging: should we be concerned?

^{1,2}Niels Belmans, ³Anne Caroline Oenning, ^{4,5}Benjamin Salmon, ¹Bjorn Baselet, ^{1,6}Kevin Tabury, ⁷Stéphane Lucas, ²Ivo Lambrichts, ¹Marjan Moreels, ^{8,9}Reinhilde Jacobs and ^{1,10}Sarah Baatout

al. al. ıl. ıl. number of karyorrhexis and binucleated cells was greater after tiple X-rays Exfoliated oral No induction of Popova et al. MN, but increased mucosa cells $(2007)^{116}$ cytotoxicity (pyknosis, karyolysis, karyorrhexis). Leratinized gingivalSignificant induction of Cerqueira et al. cells MN, and cytotoxicity $(2008)^{113}$ (pyknosis, karyolysis, karyorrhexis) Exfoliated oral No induction of Ribeiro and mucosa cells MN, but increased Angelieri (2008)117 cytotoxicity

WORLD TOUR 2023 2023 iadmfrworldtour.org

Home

Research

Team C

Chairs Training

Visiting researcher

More

Reinhilde.Jacobs@kuleuven.be

omfsimpath.be