Средства дистанционного и автоматизированного управления

Обзор опыта Японии в области атомной энергетики

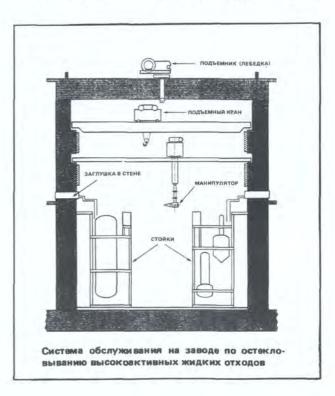
К. Уемацу

Доля атомной энергетики в общем производстве электричества в Японии при 30 действующих АЭС составляла на июль 1985 г. свыше 20 %. Кроме того, построены различные установки ядерного топливного цикла, в том числе установки по обогащению урана, изготовлению топлива, переработке отработавшего топлива и обработке высокоактивных жидких отходов.

В случае аварии на таких установках их ремонт потребует много времени, а опасность радиоактивного облучения оператора значительно возрастет. Поэтому разрабатываются системы дистанционного управления для использования их в тех случаях, когда высокие уровни радиации не позволяют обслуживающему персоналу войти на территорию установки. Преимущества дистанционных систем заключаются в том, что они сокращают время регулярных проверок, сокращают число необходимого для проведения инспекций персонала и снижают дозу радиационного облучения инспекторов и обслуживающего персонала.

В данной статье содержится краткий обзор некоторых средств дистанционного и автоматизированного управления, уже разработанных или находящихся в стадии разработки на заводе по переработке отработавшего топлива в Токаи, на заводе по остекловыванию высокоактивных жидких отходов (HLLW) и на японских АЭС. Завод по переработке принадлежит японской Корпорации по развитию энергетических реакторов и ядерного топлива (PNC), которая также завершила разработку проекта для завода по остекловыванию высокоактивных жидких отходов.

Завод по переработке отработавшего топлива в Токаи


Корпорация по развитию энергетических реакторов и ядерного топлива (PNC) построила завод по переработке отработавшего топлива в Токаи с производительностью 0,7 т топлива для легковод-

Г-н Уемацу, исполнительный директор Корпорации по развитию энергетических реакторов и ядерного топлива (PNC) Япония

ных реакторов в день. С момента ввода в эксплуатацию в 1977 г. и по март 1985 г. включительно, завод переработал 179 т тяжелого металлического урана.

На заводе действуют два типа систем дистанционного управления. Одна система используется в процессе разгрузки топлива, а вторая — ремонтно-профилактическая — в технологическом процессе. Во избежание облучения персонала разгрузка топлива осуществляется дистанционно в водном бассейне. В системе разгрузки применяется телескопическая труба и специальное приспособление для захвата кассеты с топливом.

Механическое оборудование для работ в здании основного технологического процесса управляется дистанционно и включает мощный манипулятор, встроенный кран и вспомогательный манипулятор. Обзор осуществляется через экранированные окна.

Количество ма-		Подъемн	oe .	
нипуляторов:	2	усилие:		15 Kr
Форма манипу-	локоть	Собственная		
лятора:	вниз	балансировка:		элек-
				тричес-
				кая
Степень свобо-		Способ у	прав-	
ды:	7	ления:		цифро-
Билатеральная		_		вой
степень	_	Диапазон	1 ДВИ-	
свободы:	7	жения:	+135 ⁰	-45 ⁶
Эксплуатаци-		плечо:	+135	
онная скорость:				(шаг)
плечо:	40 ⁰ /c	локоть:	+450	-60°
	(war)		. 250	(шаг)
локоть	60°/c		+35°	—215 ⁰ (крен)
	(war)	кисть:	±450	(крен <i>)</i> (шаг)
	60º/c	KUCIB:	+450	(шаг/
	(крен)		145-	(y) OJI/
КИСТЬ:	160 º /c			
	(шаг)		±900	(крен)
	160º/c			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(угол)	захват:	0	90 мм
	160º/c			
204 007	(крен)			
3ахват:	100 мм/с		o ∩	
			DUN.	
		, pC		
		4		
			455	
		M		
		Η		<u> </u>
			4	Si.
		M.		O B
		48		-

Обслуживание оборудования, в котором протекают химические процессы, осуществляется путем непосредственного контакта после соответствующей дезактивации оборудования.

Кроме упомянутого выше оборудования, разработан целый ряд дистанционных механизмов и систем на случай выхода из строя оборудования и для выполнения требований по контролю установки. К ним относятся устройства для дистанционного ремонта бака для растворения, оборудование для дистанционного контроля внутри горячей камеры и работ для проведения дезактивации.

Устройства для дистанционного ремонта. После того как в 1982—1983 гг. произошли утечки в двух баках растворения, были разработаны и изготовлены дистанционно управляемые устройства для ремонта баков. Ремонтные работы были успешно проведены с помощью сварки и шлифования с применением перископа и телевизионной камеры. Баки проверялись на отсутствие течей ультразвуковым методом и при помощи окрашивающих веществ.

Оборудование для дистанционного контроля внутреннего оборудования камеры. Данная система была разработана для проверки внутреннего оборудования камеры, доступ к которому затруднен изза высоких уровней радиации. Различают два типа оборудования дистанционного контроля: двигающееся по полу и имеющее манипулятор. Оборудование первого типа снабжено тележкой, способной двигаться по поддону, а второго типа - гибким манипулятором, на котором крепится телевизионная камера, обеспечивающая широкий обзор. Робот для дезактивации. При установке нового бака растворения необходимо было провести дезактивацию камеры с тем, чтобы обслуживающий персонал мог войти в нее и установить соответствующее оборудование. Для проведения дезактивации камеры был создан дистанционно управляемый робот. Этот робот имеет манипулятор с захватом для работы с гидромонитором и щетками для мытья пола и стенок камеры.

Дистанционные системы для высокоактивных жидких отходов

Начало строительства установки для остекловывания высокоактивных жидких отходов на заводе по переработке топлива в Токаи запланировано на 1987 г. Технический проект завершен в 1984 г. с учетом новой концепции дистанционного управления технологическим оборудованием в целях повышения эксплуатационной готовности установки и снижения дозы радиационного облучения персонала.

Оборудование на установках смонтировано в стойках, расположенных с двух сторон вдоль стен горячей камеры. Дистанционное обслуживание будет осуществляться с помощью расположенных в камере 20-тонных кранов, двухманипуляторного усовершенствованного серворобота и телевизионной системы наблюдения. В целях реализации концепции системы дистанционного обслуживания Корпорация по развитию энергетических реакторов и ядерного топлива (РNC) в настоящее время разрабатывает:

- Систему с двухманипуляторным билатеральным сервороботом, снабженным транспортером, оптической системой передачи сигналов на базе волоконной оптики и телевизионной системой с высоким разрешением, защищенной от воздействия радиации
- Модульную систему, включая конструкцию стой-ки
- Дистанционные жидкостные и электрические разъемы
- Дистанционную систему отбора проб
- Систему контроля в процессе эксплуатации

В 1983 г. РNС разработала первый прототип двухманипуляторного билатерального серворобота; разработка робота с одним манипулятором Прототип II, началась в 1984 г. Технические условия для

Данные роботы общего назначения были разработаны японскими компаниями для целей проверки и технического обслуживания на атомных электростанциях. Автоматизированное устройство "Атооту" было создано фирмой "Тосиба", гусеничное устройство — фирмой Хитачи и одноманипуляторный робот — фирмой "Митцубиси (Источник: PNC)

Роботы общего назначения	разработанные	в Японии
--------------------------	---------------	----------

	Компания Митцубиси Хеви Индас- трис Лтд.	Компания Тосиба Лтд.	Компания Хитачи Лтд.
Способ пере- движения	4 ноги или колеса	4-х колесные системы (колесная системы а имеет 3 колеса)	Гусеничный ход различ- ной формы
Манипулятор: степень			
свободы	6+1 (зах- ват)	8+1 (зах- ват)	6+1 (захват)
метод управле- ния	Сконцентри- рованные приводы Проводной привод	Рассредо- точенные приводы	Рассредоточен ные приводы
подъемное усилие действие	10 кгс Основной манипуля- тор с сило- вым отра- жением	10 кгс	3 кгс Обучаемый робот
Визуальная информация	Черно-бе- лое стерео- телевидение	Объемное телевидение	Телевидение

360 KF

300 кг

Общий вес

420 KF

Роботы специального назначения, разработанные в Японии

Тип реакто- ра	Тип робота	Назначе- ние*		
		A	В	C
BWR	Автоматизированный перегрузчик			
	топлива			
BWR	Дистанционное автоматизиро-			
	ванное устройство для замены			
	приводов регулирующих стерж-			
	ней, CRD		•	
BWR	Устройство для смены нейтрон-	_	_	
	ного детектора			
BWR	Фланец главного паропровода		•	
BWR	Транспортер топлива			•
BWR	Автоматизированное ультра-			
	звуковое устройство для про-		_	
	верки JSI			
BWR	Устройство для дезактивации		_	_
	трубопроводов			
BWR	Устройство для дезактивации			
	внутренней стенки (RV)		9	
BWR	Автоматизированное устройство		_	
	для мойки контейнеров		•	•
PWR	Автоматизированный перегруз-			
	чик топлива			
PWR	Транспортер топлива			
PWR	Манипулятор для дезактивации			
	водного бассейна парогенератора (SG)			
PWR	Манипулятор для работ в водном			
	бассейне SG			
PWR	Робот для парогенератора			
PWR	Устройство для работ в люке			
	парогенератора			
PWR	Устройство для замены CRD			0
PWR	Ультразвуковое устройство для			
	проверки трубопроводов			

*А: сокращает время регулярных инспекций.

В: снижает опасность радиационного облучения оператора.

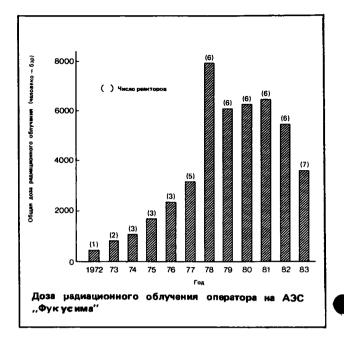
С: сокращает число необходимого персонала.

Ядерная энергетика и электроника

Прототипа II, который планируется к использованию на заводе по остекловыванию жидких отходов, уже утверждены и приводятся в таблице.

Средства дистанционного и автоматизированного управления для атомных электростанций

В число 30 действующих в Японии (по состоянию на июль 1985 г.) атомных электростанций входят 29 станций с легководными реакторами и одна — с реактором с газовым охлаждением. Кроме этого, в стадии разработки находится усовершенствованный тепловой реактор.


На ранней стадии средства дистанционного управления применялись в основном для перегрузки топлива; оператор управлял перегрузочной машиной, перемещая отработавшее топливо под водой.

С тех пор, по мере накопления опыта, были разработаны различные автоматические устройства и системы с применением роботов для инспекционных и других целей. Их применение должно привести к сокращению времени, необходимого для текущих осмотров, к снижению дозы радиационного облучения оператора и к уменьшению числа инспекционного персонала.

Сокращение времени на инспекции. В соответствии с принятым японским правительством законом инспекции атомных электростанций должны проводиться раз в год. В такую проверку включено также и техническое обслуживание оборудования.

Во второй половине 70-х годов эксплуатационная готовность АЭС была низкой из-за частых остановов по причине неполадок оборудования, а также возрастания затрат и времени на контрольные осмотры ввиду ужесточения соответствующих требований. В целях повышения эксплуатационной готовности станций необходимо сократить до минимума как число сбоев аппаратуры, так и время, затрачиваемое на инспекции. Для достижения этих целей были разработаны различные автоматизированные системы с применением роботов. Применение таких систем привело к сокращению времени на инспекционные проверки и к снижению дозы облучения оператора.

Радиационное облучение. Различные автоматизированные системы с применением роботов помогли сократить дозу радиационного облучения инспекционного персонала. Как показано на прилагаемом графике, доза радиационного облучения оператора

на атомной электростанции "Фукусима" снизилась после того, как на ней в 1978 г. вступили в строй различные автоматизированные системы с применением роботов. В период 1972—1978 гг. эти дозы возрастали.

Сокращение потребностей в персонале. Найти достаточное количество квалифицированных сотрудников для проведения регулярных инспекционных проверок очень трудно, и положение осложняется по мере увеличения числа атомных электростанций. Следовательно, очень важно проводить регулярные инспекции с меньшим числом персонала и с большим числом роботов. В таблице на стр. 47 приведены данные автоматизированных систем, разработанных к настоящему времени, включая и те, которые были созданы для специальных целей на ранней стадии развития.

Нынешней тенденцией в развитии робототехники является создание универсальных роботов, способных выполнять различные задачи на атомной электростанции. Для обслуживания клапанов нужен, например, робот, обладающий высокой надежностью и имеющий человекоподобные ноги, подвижные руки. В таблице приведены параметры различных роботов общего назначения, разработанных в Японии.