核退役

正视过去,确保未来

文/ Patrick O'Sullivan

) 计在未来10至20年内,需要退役的核设施数量将大幅增加。

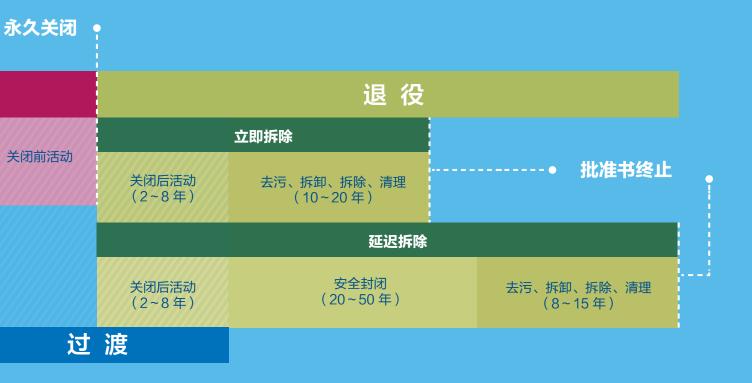
设施的使用年限和永久关闭的时间之 间不是简单的关系,因为包括政治和 经济力量在内的多种因素都会影响这 一决定。除其他因素外,时间也可能 取决于维护、修缮费用和电力市场状 况(见第8页和第9页)。然而,政府的 政策越来越多地推动根据可持续性原 则立即拆除的战略,从而不将废物管 理等退役相关负担留给后代。场址是 否有可能被重新用于建造新的核设施 或其他目的也是重要的考虑因素。

时间跨度和预算

大型核设施退役是一项复杂的 工作,通常需要很长的时间跨度和大 量的预算。例如,核动力堆的退役费 用,包括相关废物管理费用,通常在 5亿至20亿美元之间,而气冷石墨慢 化反应堆由于尺寸更大和更加复杂, 退役费用远高于压水堆或沸水堆的 费用。退役过程通常需要15至20年左 右,尽管这会有所不同。大型燃料循

开始运行 运行 运行前 运行 设计 建造 调试 (30~60+年)

环设施(例如用于乏燃料后处理的设 施)的退役费用通常在40亿美元左 右,同时这类设施的退役可能需要30 多年才能完成。一座热功率输出为10 兆瓦的研究堆的退役费用可能超过 2000万美元,需要5至10年完成退役, 尽管费用取决于反应堆的规模、用途 和运行历史。然而,一些成功的例子 表明,有可能实现更省时、花费更少 的退役过程。


退役行业面临的最大挑战

从现在到2050年,核设施将永 久关闭的数量预计会增加, 这意味着 需要大量的人力和财力资源来实施必 要的退役计划,其中一些退役计划 将持续到本世纪末。对于商业设施,

通常在运行期间预留资金来支付退役 费用。然而,大量设施的退役通过国 家资源直接或间接提供资金。在这些 情况下,能否获得足够的资金可能会 推迟退役实施。实施未来的退役计划 还需要大量高技能的人才队伍。鼓励 年轻人投身退役和放射性废物管理事 业,是该行业目前面临的最重大挑战 之一(见第30页)。

废物的再循环和再利用

退役会产生大量物质和废物,其 中大部分没有受到放射性污染。目前 正在努力确保根据循环经济原则再 循环或再利用包括金属、混凝土碎 片和土壤在内的大部分未受污染的 废物(见第28页)。在一些情况下,拆

除过程中产生的瓦砾可以用来填充因 拆除地面以下结构而产生的空间。目 前也在考虑更多地利用金属回收,包 括在核工业中回用。

大部分被放射性污染的物质——通常占退役产生的物质总量的约5%——含有极低水平的放射性,适合在近地表处置库中处置。一小部分放射性污染物质(不到所产生物质总量的5%)由于放射性水平高或存在高活度或长寿命的放射性核素,不适合将解除监管控制或进行近地表处置;这些物质最终将在地下处置设施中安全处置(见第20、21、22和23页)。

满足未来需求

鉴于未来退役需求程度以及新技 术和新兴技术提高退役效率的潜力, 一旦此类技术广泛采用并且其成本效 益得到证明,在不久的未来,项目实施可能会发生重大变化。一些发展包括:应用数字技术支持规划和优化项目实施;更多地使用远程操作工具,包括使用无人机和机器人分割核电厂部件、处理材料、测量和去污;提高废物管理活动的自动化;以及使用人工智能(见第12页)。

供应链的作用在确保未来项目 尽可能有效和高效地实施方面至关重 要。已有证据表明,供应链组织正在 新技术研发、工程、拆除和放射性废 物管理等领域发展专门知识,以提供 更广泛的退役服务。针对核电厂退役 的一个最新发展情况是出现了退役联 合体,该联合体将各种专业化公司联 合起来,通过遵循标准化方案和承担 所有相关项目风险,在固定预算内实 施整个退役项目,(见第24页)。

什么是核退役?

在核能行业,"退役"是对实现核设施永久关闭、去污、拆除和解除监管控制的所有活动的总称。直到放射性物质和其他有害物质从场址清除、以前用作核设施的建筑物和土地已准备好用于新用途,退役才算完成。(退役过程)最后一步涉及广泛的调查,以证实场址不存在任何重大的放射性,使其能够解除监管控制。

全球设施退役数量

420⁺座

全球在运核动力堆

全球目前约有420座核动力堆 在运行,其中大部分即将完成初始 设计运行寿期。

1/2

在2050年前关闭

到2050年,多达一半的现有 在运核电机群可能永久关闭,因此 需要退役。

≈**200**座

超过200座核动力堆已经不再运行,其中21座已经完全退役。

222_座

研究堆, 位于53个国家 **353**座

燃料循环设施, 位于40个国家

可能永久关闭

目前在运的大量研究堆(222座,位于53个国家)和燃料循环设施(353座,位于40个国家)也可能在这个时期永久关闭。

≈450_座 +150_座

研究堆

和

燃料循环设施

已完全退役

约有450座研究堆已完全退役,还有150多座燃料循环设施也已完全退役。

自本世纪初以来,特别是在20世纪中叶建立核计划的国家,如 法国、德国、意大利、日本、俄罗斯联邦、英国和美国,已获得大量 的退役经验。包括保加利亚、加拿大、立陶宛、斯洛伐克、西班牙和 乌克兰在内的其他国家也拥有这方面专门知识,而比利时、中国、印 度、韩国、巴基斯坦和瑞典预计在未来30年内开展重大计划。