

GC(XXXVII)/1065 28 July 1993

International Atomic Energy Agency
GENERAL CONFERENCE

GENERAL Distr. Original: ENGLISH

Thirty-seventh regular session Sub-item 14(a)(ii) of the provisional agenda GC(XXXVII)/1052

MEASURES TO STRENGTHEN INTERNATIONAL CO-OPERATION IN MATTERS RELATING TO NUCLEAR SAFETY AND RADIOLOGICAL PROTECTION

(a) Implementation of resolution GC(XXXVI)/RES/582

(ii) The safety overview process: The Agency's safety services

1. At its 1992 regular session, in resolution GC(XXXVI)/RES/582, the General Conference urged the Board of Governors and the Director General - inter alia - to consider "a more thorough and transparent nuclear safety overview process with the objective of achieving a high safety performance in all operating nuclear installations".

2. With a view to greater thoroughness and transparency in the nuclear safety overview area, the Secretariat has for some years been endeavouring to ensure the existence of an "international presence" in this area by promoting a number of services for the advancement of operational safety (including OSART and ASSET missions) and also the Incident Reporting System and - for communication to the public - the International Nuclear Event Scale, and in the same resolution the General Conference last year recommended to Member States that they avail themselves fully of these.

3. The other safety services provided by the Agency (also designed to complement - rather than replace - national safety efforts) are the Engineering Safety Review Service (ESRS), whereby missions assist Member States in trying to ensure nuclear power plant safety levels that are in accordance with modern standards, particularly for imported plants (the emphasis of ESRS missions has so far been mainly on seismic safety and siting); the INSARR (Integrated Nuclear Safety Assessment of Research Reactors) service, which involves missions with more comprehensive objectives than the research reactor safety missions carried out pursuant to Project and Supply Agreements with Member States; the International Peer Review Service (IPERS), whereby independent reviews are performed of - inter alia - the PSA (probabilistic safety analysis) methods applied by Member States in their PSA programmes for assessing the design and operation of nuclear facilities; the IRRT (International Regulatory Review Team) service, the purpose of which is to advise and assist Member States wishing to strengthen and enhance the effectiveness of their national nuclear regulatory bodies; and the RAPAT (Radiation Protection Advisory Team) service, whereby assessments are performed of national radiation protection services and their associated national infrastructures and Member States are assisted in establishing good safety practices.

In addition, the Secretariat is preparing to launch a service for the assessment of Safety Culture in organizations engaged in nuclear power activities - the ASCOT (Assessment of Safety Culture in Organizations Team) service.

4. Reports relating to OSART and ASSET missions, to the Incident Reporting System and to the International Nuclear Event Scale were submitted to the General Conference last year in document GC(XXXVI)/INF/309, and further reports relating to them were considered by the Board of Governors in June.

5. The Board requested the Director General to transmit the latter reports, updated as necessary, to the General Conference for consideration at its thirty-seventh regular session, and this document has been prepared in response to that request and to the request, in the final operative paragraph of resolution GC(XXXVI)/RES/582, that the Board and the Director General report to the General Conference in 1993 on the progress achieved in implementing that resolution.

THE OSART (OPERATIONAL SAFETY REVIEW TEAM) SERVICE

Background

1. The OSART service, which has been available for more than ten years, aims to help Member States enhance the safety of operation of their nuclear power plants by reviewing operational safety practices and performance at individual plants, identifying strengths and weaknesses, providing objective advice on improvements and making the results of operational safety reviews available to other Member States.

2. The service is appropriate to all Member States with nuclear power programmes, whether the programme is in an early stage of development or well established.

3. The Secretariat staff responsible for the service endeavour to ensure that the guidance material employed in the conduct of OSART missions is based on the latest operational safety principles and practices; for example, each mission now includes a safety culture review using material in the 1991 Agency publication Safety Series No. 75-INSAG-4 entitled *Safety Culture*. They also endeavour to ensure that all OSART members - from within and outside the Secretariat - have the most relevant experience, and prior to each mission appropriate team member training is provided.

4. Follow-up visits to operating nuclear power plants, now an integral part of the OSART service, provide an insight into the thoroughness of the OSART process. In the period 1989-92, eleven follow-up visits took place, each lasting about one week. During the visits, the team members met with plant managers and other senior personnel and assessed their responses to the proposals made regarding the safety issues identified in the course of the original OSART missions.

PERIOD	ISSUES RESOLVED	SATISFACTORY PROGRESS	LITTLE OR NO PROGRESS	PROPOSAL(S) WITHDRAWN	TOTAL
[No. of	No. of issues (%)	No. of issues	No. of issues	No. of issues	No. of
visits]		(%)	(%)	(%)	issues (%)
1989/90	219	236	74	18	547
[6]	(40)	(43)	(14)	(3)	(100)
1991/92	312	200	51	4	567
[5]	(55)	(35)	(9)	(1)	(100)

Results of OSART follow-up visits during the period 1989-92

5. From the foregoing table, which is an update of Table 2 in document GOV/INF/611, it can be seen that the percentage of resolved safety issues has risen and the percentage of withdrawn proposals has fallen. This suggests that the effectiveness of the OSART service has been increasing, with plant operators taking OSART missions seriously and making worthwhile improvements in operational safety.

6. The effectiveness of the OSART process depends very much on the co-operation of Member States, particularly in providing cost-free experts to work with the Secretariat in organizing OSART missions and to serve as mission leaders and assistant mission leaders.

Missions since the 1992 session of the General Conference

7. Since the 1992 session of the General Conference, at which the Conference had before it the status report contained in Annex 1 to document GC(XXXVI)/INF/309, there have been full-scope OSART missions to the Sizewell B nuclear power plant in the United Kingdom (26 October to 13 November 1992), the Mochovce nuclear power plant in Slovakia (11 to 29 January 1993), the Gravelines nuclear power plant in France (15 March to 2 April 1993), the Cernavoda nuclear power plant in Romania (26 April to 14 May 1993), the Guangdong nuclear power plant in China (17 May to 4 June 1993 and the Krsko nuclear power plant in Slovenia (5 to 23 July 1993) and follow-up visits to the Ringhals nuclear power plant in Sweden (2 to 6 November 1992), the Koeberg nuclear power plant in South Africa (29 March to 2 April 1993), the Kozloduy nuclear power plant in Bulgaria (26 to 30 April 1993) and the Novovoronezh nuclear power plant in Russia (26 June to 2 July 1993).

ų.

8. The number of requests for OSART missions has declined somewhat, and in this connection it is pointed out that a few Member States with operating nuclear power plants have never requested a mission and some have not requested one for a long time.

Transparency

9. In the interests of greater transparency, the Secretariat, in its official OSART mission reports, is now referring more explicitly to the strengths and weaknesses found during missions; also, it is encouraging host Member States to remove the initial restriction on the distribution of reports so that these can be made available to other Member States.

10. Despite the change to a more open reporting style, late in 1991, no Member State has since that time considered it necessary to inform the Agency that it wishes a mission report to remain restricted.

	SCHEDULE OF OSART MISSIONS REQUESTED BY MEMBER STATES				
NO.	TYPE	COUNTRY	NPP/ LOCATION	DATE	PLANT TYPE
1.	0	Korea, Rep.	Ko-Ri 1	8-26 August 1983	PWR 600 MW
2.	0	Yugoslavia	Krsko	6-17 February 1984	PWR 670 MW
3.	Р	Philippines	PNPP-1	25 June-12 July 1984	PWR 650 MW
4.	0	Pakistan	Kanupp	7-20 January 1985	PHWR 140 MW
5.	Р	Philippines	PNPP-1	4-15 February 1985	PWR 650 MW
6.	0	Brazil	Angra I	12-30 August 1985	PWR 660 MW
7.	0	France	Tricastin	4-29 October 1985	PWR 950 MW
8.	Р	Mexico	Laguna Verde	12-31 January 1986	BWR 680 MW
9.	0	Finland	Olkiluoto	3-21 March 1986	BWR 740 MW
10.	0	Sweden	Barsebäck	1-19 September 1986	BWR 620 MW
11.	0	Netherlands	Borssele	6-24 October 1986	PWR 480 MW
12.	0	Germany	Biblis A	17 October-14 November 1986	PWR 1200 MW
13.	о	Korea, Rep.	Ko-Ri 3/4	1-19 December 1986	PWR 950 MW
14.	Р	Mexico	Laguna Verde	12-30 January 1987	BWR 680 MW
15.	0	Germany	Krümmel	16 February-6 March 1987	BWR 1320 MW
16.	0	Italy	Caorso	16 March-3 April 1987	BWR 890 MW
17.	0	Netherlands	Dodewaard	27 April-15 May 1987	BWR 60 MW
18.	о	Canada	Pickering	1-19 June 1987	PHWR 540 MW
19.	о	USA	Calvert Cliffs	10-28 August 1987	PWR 860 MW
20.	Ρ	Mexico	Laguna Verde	4-15 September 1987	BWR 680 MW
21.	0	Germany	Philippsburg	2-20 November 1987	PWR 1350 MW
22.	0	Spain	Almaraz 2	30 November-18 December 1987	PWR 930 MW

INTERNATIONAL ATOMIC ENERGY AGENCY OSART (OPERATIONAL SAFETY REVIEW TEAM) SERVICES as of 1 July 1993

The OSART Services Options

O = Operational Safety Review Team (OSART)

P = Pre-operational Safety Review Team (Pre-OSART)

T = Technical Exchange Review - Review of specific OSART topics and/or assistance mission

S = Safety Review Mission - Design review combined with an OSART mission

	sci	HEDULE OF OSART	MISSIONS REQUESTE	ED BY MEMBER STATES	
NO.	TYPE	COUNTRY	NPP/ LOCATION	DATE	PLANT TYPE
23.	Р	Italy	Alto Lazio	18 January-5 February 1988	BWR 1000 MW
24.	0	Sweden	Forsmark 3	22 February-11 March 1988	BWR 1150 MW
25.	0	Japan	Takahama 3/4	3-21 October 1988	PWR 870 MW
26.	0	France	St. Alban 1/2	24 October-11 November 1988	PWR 1380 MW
27.	0	Hungary	Paks 1/4	14 November-1 December 1988	WWER 440/213
28.	0	USSR	Rovenskaya 3	5-23 December 1988	WWER 1000 MW
29.	0	Pakistan	Kanupp	8-19 January 1989	PHWR 140 MW
30.	0	Brazil	Angra I	20 February-10 March 1989	PWR 660 MW
31.	Р	China	Qinshan	3-21 April 1989	PWR 300 MW
32.	0	USA	Byron 1/2	15 May-2 June 1989	PWR 1180 MW
33.	т	South Africa	Koeberg	5-16 June 1989	PWR 970 MW
34.	0	UK	Oldbury	3-21 July 1989	GCR 230 MW
35.	0	Korea, Rep.	Wolsong	24 July-11 August 1989	PHWR 680 MW
36.	Р	USSR	Gorky DHNP	14 August-1 September 1989	WWER 500 MW
37.	0	CSFR	Dukovany	4-22 September 1989	WWER 440/213
38.	Р	Poland	Zarnowiec	15 September-2 October 1989	WWER 440/213
39.	0	Sweden	Oskarshamn 1	6-24 November 1989	BWR 460 MW
40.	Т	South Africa	Koeberg	20 November-8 December 1989	PWR 970 MW
41.	0	Spain	Cofrentes	22 January-9 February 1990	BWR 990 MW
42.	Р	CSFR	Temelin	23 April-11 May 1990	WWER 1000 MW
43.	Т	Canada	Point Lepreau	2-13 July 1990	PHWR 680 MW
44.	Р	Bulgaria	Belene	2-20 July 1990	WWER 1000 MW

٢

	sci	HEDULE OF OSART	MISSIONS REQUESTE	D BY MEMBER STATES	5
NO.	TYPE	COUNTRY	NPP/ LOCATION	DATE	PLANT TYPE
45.	Т	CSFR	Bohunice 1/2	3-7 September 1990	WWER 440/230
46.	Р	Romania	Cernavoda	24 September-12 October 1990	PHWR 700 MW
47.	0	Bulgaria	Kozloduy 5	15-26 October 1990	WWER 1000 MW
48.	0	Finland	Loviisa	5-23 November 1990	WWER 440/213
49.	Р	China	Guangdong	26 November-14 December 1990	PWR 980 MW
50.	Т	China	Guangdong	21 January-1 February 1991	PWR 980 MW
51.	0	Sweden	Ringhals 3/4	14 January-1 February 1991	PWR 960 MW
52.	S	CSFR	Bohunice 1/2	8-26 April 1991	WWER 440/230
53.	S	Bulgaria	Kozloduy 1/4	3-21 June 1991	WWER 440/230
54.	0	Bulgaria	Kozloduy 5	15 July-2 August 1991	WWER 1000 MW
55.	s	USSR	Novovoronezh 3/4	12-30 August 1991	WWER 440/230
56.	S	USSR	Kola 1/2	9-27 September 1991	WWER 440/230
57.	т	CSFR	Dukovany	14-25 October 1991	WWER 440/213
58.	0	South Africa	Koeberg	4-22 November 1991	PWR 970 MW
59.	0	Germany	Grafenrheinfeld	25 November-13 December 1991	PWR 1300 MW
60.	0	France	Blayais	13-31 January 1992	PWR 950 MW
61.	0	France	Fessenheim	9-27 March 1992	PWR 920 MW
62.	0	Japan	Fukushima Daini 3/4	23 March-10 April 1992	BWR 1100 MW
63.	Т	Brazil	Angra I	11-15 May 1992	PWR 660 MW
64.	0	USA	Grand Gulf	3-21 August 1992	BWR 1370 MW
65.	Р	UK	Sizewell B	26 October-13 November 1992	PWR 1260 MW

NO.	TYPE	COUNTRY	NPP/ LOCATION	DATE	PLANT TYPE
66.	Р	Slovakia	Mochovce 1/4	11-29 January 1993	WWER 440/213
67.	0	France	Gravelines	15 March-2 April 1993	PWR 950 MW
68.	Р	Romania	Cernavoda	26 April-14 May 1993	PHWR 700 MW
69.	Р	China	Guangdong	17 Мау-4 June 1993	PWR 980 MW
70.	s	Russia	Smolensk	7-18 June 1993	<i>RBMK 1000</i> MW
71.	о	Slovenia	Krsko	5-23 July 1993	PWR 670 MW
72.	s	Ukraine	Zaporozhe	7-25 February 1994	WWER 1000 MW
73.	0	France	Cattenom	14 March-1 April 1994	PWR 1360 MW
74.	0	UK	Hunterston B	11-29 April 1994	AGR 620 MW
75.	0	Korea, Rep	Ulchin	May/June 1994	PWR 950 MW
76.	0	Lithuania	Ignalina	May/June 1994	RBMK 1500 MW
77.	0	Canada	Gentilly 2	2nd half 1994	PWR 690 MW
78.	0	Argentina	Embalse	2nd half 1994	PHWR 650 MW
79.	0	Bulgaria	Kozloduy	2nd half 1994	WWER 440/230
80.	0	Switzerland	Leibstadt	21 November-10 December 1994	BWR 1050 MW
81.	0	Mexico	Laguna Verde	Ist half 1995	BWR 690 MW
82.	0	Ukraine	Khmelnitsky	1st half 1995	WWER 1000 MW
83.	0	China	Qinshan	March/April 1995	PWR 300 MW

· ,

١

	FOLLOW-UP VISITS				
	SCHEDU	ILE OF OSART FOLLO	OW-UP VISITS REQUE	ESTED BY MEMBER ST	ATES
NO.	TYPE	COUNTRY	NPP/ LOCATION	DATE	PLANT TYPE
1.	0	Netherlands	Borssele	6-10 April 1987	PWR 480 MW
2.	0	Italy	Caorso	16-24 April 1989	BWR 890 MW
3.	0	Sweden	Barsebäck	30 October-3 November 1989	BWR 620 MW
4.	0	Sweden	Forsmark 3	30 October-3 November 1989	BWR 1150 MW
5.	0	Yugoslavia	Krsko	30 May-1 June 1990	PWR 670 MW
6.	0	USSR	Rovenskaya 3	25-29 June 1990	WWER 1000 MW
7.	0	UK	Oldbury	15-19 October 1990	GCR 230 MW
8.	0	CSFR	Dukovany 1/4	12-16 November 1990	WWER 440/213
9.	Р	China	Qinshan	14-18 January 1991	PWR 300 MW
10.	о	Hungary	Paks 1/4	25 February-1 March 1991	WWER 440/213
11.	0	Sweden	Oskarshamn 1	11-15 March 1991	BWR 460 MW
12.	о	Spain	Cofrentes	13-17 May 1991	BWR 900 MW
13.	Ρ	Romania	Cernavoda	9-13 September 1991	PHWR 700 MW
14.	Р	CSFR	Temelin	17-21 February 1992	WWER 1000 MW
15.	s	CSFR	Bohunice 1/2	27-30 April 1992	WWER 440230
16.	0	Brazil	Angra I	4-8 May 1992	PWR 660 MW
17.	т	China	Guangdong	18-22 May 1992	PWR 980 MW
18.	0	Sweden	Ringhals 3/4	2-6 November 1992	PWR 960 MW
19.	0	South Africa	Koeberg	29 March-2 April 1993	PWR 970 MW
20.	S	Bulgaria	Kozloduy 1/4	26-30 April 1993	WWER 440/230
21.	S	Russia	Novovoronezh 3/4	28 June-2 July 1993	WWER 440/230
22.	о	Japan	Fukushima Daini 3/4	25-29 October 1993	BWR 1100 MW
23.	о	UK	Sizewell B	1-5 November 1993	PWR 1260 MW
24.	о	Germany	Grafenrheinfeld	8-12 November 1993	PWR 1300 MW
25.	о	USA	Grand Gulf	1st half 1994	BWR 1370 MW

FOLLOW-UP VISITS

THE ASSET (ASSESSMENT OF SAFETY SIGNIFICANT EVENTS TEAM) SERVICE

Background

1. The ASSET service, initiated in 1986, provides advice and assistance to Member States with a view to preventing safety-significant incidents at nuclear installations. The review procedures applied in ASSET missions are based on root cause analysis methodology and were refined in 1992 in the light of feedback from operating and regulatory organizations. Pending safety issues are identified and recommendations made on ways of eliminating the root causes of potential incidents.¹

2. All Member States with operating nuclear installations stand to benefit from the advice and assistance of teams whose composition ensures an international perspective based on the best expertise available worldwide.

Developments since the 1992 session of the General Conference

3. Since the 1992 session of the General Conference, at which the Conference had before it the status report contained in Annex 2 to document GC(XXXVI)/INF/309, there have been seven full-scope ASSET missions - to the Balakovo nuclear power plant in the Russian Federation (three WWER units of 1000 MW each), the Paks nuclear power plant in Hungary (four WWER-440/213 units), the Dungeness B nuclear power plant in the United Kingdom (two AGR units of 480 MW each), the Khmelnitsky nuclear power plant in Ukraine (one WWER unit of 1000 MW), the Leningrad nuclear power plant in Russia (four RBMK units of 1000 MW) and the Borssele nuclear power plant in the Netherlands (one PWR unit of 480 MW) and the Smolensk nuclear power plant in Russia (three RBMK units of 1000 MW each); also, there have been four follow-up missions - to the Angra nuclear power plant in Brazil (one PWR unit of 625 MW), the Ignalina nuclear power plant in Slovakia (two WWER-440/230 units) and the Kozloduy nuclear power plant in Bulgaria (four WWER-440/230 units).

¹Three basic questions are asked regarding plant operational safety performance: What are the operational safety problems? (events - deviations, incidents, accidents): Why did they happen? (direct cause); Why were they not prevented? (root cause). The teams do not review plant working practices - they analyse the root causes of safety performance deviations (more details are provided in the Nuclear Safety Review 1993). The "ASSET guidelines" are contained in IAEA-TECDOC-632.

4. From the two follow-up missions (carried out four years after the corresponding initial, full-scope missions) it was concluded that over the past few years significant progress has been made at the plants in question as regards incident prevention.²

5. In addition, since the General Conference's 1992 session four seminars have been held - at the Borssele nuclear power plant in the Netherlands, at the Rovno nuclear power plant in Ukraine, at the Ignalina nuclear power plant in Lithuania and at the Balakovo nuclear power plant in Russia - on the prevention of incidents. At the seminars, views were exchanged on the benefits to be derived from the systematic root cause analysis of safety performance deviations, which has become a regulatory requirement in many countries.

6. In June 1993 the Secretariat convened a technical committee to review the experience of users of the ASSET service. The committee made recommendations for further improving the service and further promoting the development of a consistent approach within the nuclear community to the prevention of incidents and accidents.

Transparency

7. In the interest of transparency, the operators of plants visited by ASSETs frequently invite observers - such as representatives of neighbouring countries and of local "green" movements - to participate in the reviews, the conclusions of which are nearly always presented to the press at a briefing organized by the operating organization.

8. The ASSETs openly state the still pending safety issues - without assigning blame, however - and offer practical suggestions for enhancing operational safety that can be immediately implemented. The ASSET reports always include the official response of the operating organization to the recommendations made by the ASSET, and all ASSET reports except one have been derestricted by the authorities of the countries visited for distribution upon request.

9. The increasing readiness of operating organizations to expose their installations to periodic follow-up missions is evidence of a positive attitude towards transparency.

²As can be seen from the following table, follow-up missions have been requested for later this year to Kozloduy (Bulgaria) and Kola and Novovoronezh (Russian Federation), where there are altogether eight WWER-440/230 units in operation. It is hoped that, by providing more information on the implementation of ASSET recommendations and on progress in incident prevention, they will show how effective the ASSET service is in contributing to the safer operation of nuclear installations.

<u></u>	S	CHEDULE OF ASSET	MISSIONS REQUESTED	BY MEMBER STATES	
NO.	TYPE	COUNTRY	NPP/LOCATION	DATE	PLANT TYPE
1.	R	YUGOSLAVIA	KRSKO	1986	PWR 650 MW
2.	R	BRAZIL	ANGRA	1988	PWR 650 MW
<i>3</i> .	A	PAKISTAN	KARACHI	MAY 1989	PHWR 140 MW
4.	A	PAKISTAN	KARACHI	SEPT. 1989	PHWR 140 MW
5.	R	LITHUANIA	IGNALINA 1,2	NOV. 1989	RBMK 1500 MW
6.	R	GERMANY	GREIFSWALD 1,2,3,4	FEB. 1990	WWER 440/230
7.	I	GERMANY	GREIFSWALD 1,2,3,4	JUNE 1990	WWER 440/230
&	s	GERMANY	GREIFSWALD	JULY 1990	WWER 440/230
9.	A	FRANCE	GRAVELINES	JULY 1990	PWR 950 MW
10.	S	HUNGARY	BUDAPEST	SEPT. 1990	WWER 440/213
11.	R	CZECHOSLOVAKIA	BOHUNICE 1,2	OCT. 1990	WWER 440/230
12.	R	BULGARIA	KOZLODUY 1,2,3,4	NOV, 1990	WWER 440/230
13.	A	SPAIN	VANDELLOS I	DEC. 1990	GCR 450 MW
14.	I	PAKISTAN	KARACHI	6-10 JAN. 1991	PHWR 140 MW
15.	I	PAKISTAN	KARACHI	13-17 JAN. 1991	PHWR 140 MW
16.	s	BELGIUM	TIHANGE-DOEL	28 JAN1 FEB. 1991	PWR 1000 MW
17.	s	SPAIN	TRILLO	11-15 FEB. 1991	PWR 1000 MW
18.	R	MEXICO	LAGUNA VERDE	24 FEB8 MAR. 1991	BWR 675 MW
19.	S	KOREA, REP. OF	SEOUL-TAEJON	25-29 MAR. 1991	PWR 950 MW
20.	s	NETHERLANDS	THE HAGUE	8-11 APR. 1991	PWR 480 MW
21.	R	RUSSIAN FED.	KOLA 1,2	15-26 APR. 1991	WWER 440/230
22.	R	RUSSIAN FED.	NOVOVORONEZH 3,4	13-24 MAY 1991	WWER 440/230
23.	S	RUSSIAN FED.	KIEV	14-18 OCT. 1991	WWER-RBMK
24.	S	SWEDEN	STOCKHOLM	23-25 OCT. 1991	PWR - BWR
25.	S	CZECHOSLOVAKIA	BRATISLAVA	3-7 FEB. 1992	WWER 440
26.	S	SOUTH AFRICA	JOHANNESBURG	17-21 FEB. 1992	PWR 950 MW
27.	S	BULGARIA	SOFIA	2-6 MAR. 1992	WWER 440/230
28.	S	CHINA	WUHAN	9-13 MAR. 1992	PWR 300 MW
29.	S	FINLAND	HELSINKI	30 MAR3 APR. 1992	PWR-BWR
30.	S	BRAZIL	ANGRA	6-10 APR. 1992	PWR 650 MW
31.	R	FRANCE	FESSENHEIM	4-15 MAY 1992	PWR 920 MW
32.	1	BULGARIA	KOZLODUY	1-5 JUNE 1992	WWER 440/230
33.	S	HUNGARY	PAKS	15-19 JUNE 1992	WWER 440/213
34.	A	UKRAINE	CHERNOBYL	22-26 JUNE 1992	RBMK 1000 MW
35.	R	RUSSIAN FED.	KURSK	20-31 JULY 1992	RBMK 1000 MW
36.	5	UKRAINE	KHMELNITSKY	7-11 SEPT. 1992	PWR - RBMK
37.	S	BULGARIA	KOZLODUY	14-18 SEPT. 1992	WWER 440/230

INTERNATIONAL ATOMIC ENERGY AGENCY ASSET (ASSESSMENT OF SAFETY SIGNIFICANT EVENTS TEAM) SERVICES as of 1 July 1993

GC(XXXVII)/1065 Annex 2 page 4

38.	S	ROMANIA	CERNAVODA	21-25 SEPT. 1992	PHWR 700 MW
39.	R	RUSSIAN FED.	BALAKOVO	5-16 OCT. 1992	WWER 1000 MW
40.	R	HUNGARY	PAKS	2-13 NOV. 1992	WWER 440/213
41.	F	BRAZIL	ANGRA	23-27 NOV. 1992	PWR 650 MW
42.	R	UK	DUNGENESS "B"	7-18 DEC. 1992	AGR 600 MW
43.	S	NETHERLANDS	BORSSELE	12-14 JAN. 1993	PWR 480
44.	F	LITHUANIA	IGNALINA	1-12 FEB. 1993	RBMK 1500 MW
45.	R	UKRAINE	KHMELNITSKY	8-19 MAR. 1993	WWER 1000 MW
46.	R	RUSSIAN FED.	LENINGRAD	17-28 MAY 1993	RBMK 1000 MW
47.	R	NETHERLANDS	BORSSELE	7-18 JUNE 1993	PWR 480 MW
48.	S	UKRAINE	ROVNO	28 JUNE-2 JULY 1993	WWER 440/213
49.	F	SLOVAK REP.	BOHUNICE	5-9 JULY 1993	WWER 440/230
50.	S	LITHUANIA	IGNALINA	12-16 JULY 1993	RBMK 1500 MW
51.	R	RUSSIAN FED.	SMOLENSK	19-30 JULY 1993	RBMK 1000 MW
52.	S	RUSSIAN FED.	BALAKOVO	30 AUG-3 SEPT 1993	WWER-RBMK
53.	F	BULGARIA	KOZLODUY	6-17 SEPT. 1993	WWER 440/230
54.	F	RUSSIAN FED.	KOLA	4-8 OCT. 1993	WWER 440/230
55.	R	CZECII REP.	DUKOVANY	11-22 OCT. 1993	WWER 440/213
56.	F	RUSSIAN FED.	NOVOVORONEZII	8-12 NOV. 1993	WWER 440/230
57.	A	FRANCE	PALUEL	15-19 NOV. 1993	PWR 1400
58.	R	UKRAINE	ROVNO	22 NOV-3 DEC 1993	WWER 440/213
59.	S	SWITZERLAND	BEZNAU	6-10 DEC. 1993	PWR 360 MW
60.	S	UK	AGE-CROFT	17-19 JAN. 1994	AGR
61.	S	UK	OLDBURY	21-25 JAN. 1994	AGR M ₈ X
62.	S	UK	CLIFF-QUAY	26-28 JAN. 1994	PWR
63.	S	UKRAINE	ZAPOROZHE	7-11 FEB. 1994	WWER 1000 MW
64.	S	UKRAINE	SOUTH UKRAINE	21-25 MARCH 1994	WWER 1000 MW
65.	R	RUSSIA	KALININ	11-22 APRIL 1994	WWER 1000 MW
66.	s	SLOVENIA	KRSKO	2-6 MAY 1994	PWR
67.	R	UKRAINE	ZAPOROZHE	13-24 JUNE 1994	WWER 1000 MW
68.	R	UKRAINE	SOUTH UKRAINE	3-14 OCT. 1994	WWER 1000 MW

١

The ASSET Services

Options
Type S Mission to conduct a Seminar on "Prevention of Incidents: Safety Awareness and Management". Training of operators and regulators on use of the ASSET methodology for identifying safety
issues, assessing their safety consequences and eliminating the root causes of potential accidents and incidents.

Type R Mission to <u>Review installation</u> operational safety performance, to assess the appropriateness of corrective actions and to exchange views on the further enhancement of installation safety awareness for effective management of incident prevention.

Type A Mission to review the root cause Analysis of a very safety-significant event in order to disseminate generic recommendations on safety awareness for the effective prevention of incidents with similar root causes at any nuclear installation.

Type I Mission to assist installation management in Implementing the ASSET recommendations relating to incident prevention (quality verification, preventive maintenance, surveillance) and to experience feedback (root cause analysis, repairs and remedies).

Type F Mission to Follow-up and to assess the enhancement of installation safety awareness regarding management of the prevention of incidents as a result of the implementation of the recommendations of an ASSET mission of Type R.

THE INCIDENT REPORTING SYSTEM (IRS)

Background

1. The IRS was established in 1983 for the international collection, assessment and distribution of information on incidents at nuclear power plants in a manner which complements national systems. It is operated by the Agency in close co-operation and co-ordination with the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (NEA/OECD), which operates a system for OECD countries.

2. The information handled by the IRS, which is of value mainly to technical people working in the field of nuclear power, covers not only incidents at nuclear power plants but also safety-significant matters which come to light as a result of surveillance, maintenance, testing and other activities at such plants.

Developments since the 1992 session of the General Conference

3. Since the 1992 session of the General Conference, at which the Conference had before it the status report contained in Annex 3 to document GC(XXXVI)/INF/309, IRS information has been used in two in-depth studies, one on common-cause failures and one on Safety Culture issues. The Secretariat considers that the lessons learned from such a common-cause failure study, involving the basic safety concepts of "redundancy" and "diversity", can be helpful in connection with nuclear power plant operations and can provide insights of use in PSA activities and safety analyses. In the study on Safety Culture issues, the focus has been on IRS information which illustrates the value of Safety Culture when coping with incidents, and the Secretariat considers that the lessons learned will be useful to the ASCOT service (see para. 3 of the cover note).

4. In October 1992, representatives of 23 countries and two international organizations participating in the annual meeting of IRS National Co-ordinators discussed - inter alia - recent events at nuclear power plants, actions taken in various countries as a result of IRS reports, IRS-related studies performed in 1991-92, IRS database enhancement/modifications (software and hardware) and IRS classification code changes.

5. In December 1992 Ukraine became a participant in the IRS, and in October 1992 Slovenia replaced Yugoslavia as a participant (the Krsko nuclear power plant is located in Slovenia). With regard to the former Czechoslovakia, the Nuclear Regulatory Authority of the Slovak Republic nominated an IRS National Co-ordinator in March 1993 and the State Office for Nuclear Safety of the Czech Republic nominated an IRS National Co-ordinator in April 1993.

GC(XXXVII)/1065 Annex 3 page 2

PARTICIPANTS IN THE NUCLEAR POWER PLANT INCIDENT REPORTING SYSTEM

Argentina	since May 1983
Brazil	since November 1983
Bulgaria	since February 1985
Canada	since May 1987
China	since May 1992
Czech Republic	since April 1993
Finland	since May 1983
Hungary	since October 1984
India	since June 1984
Korea, Rep. of	since February 1983
Mexico	since May 1991
Netherlands	since June 1983
Pakistan	since August 1984
Slovak Republic	since March 1993
Slovenia	since October 1992
South Africa	since April 1990
Spain	since January 1983
Russian Federation	since September 1984
Ukraine	since December 1992
United Kingdom	since March 1986

١

PARTICIPANTS THROUGH NEA/OECD

Belgium	since February 1983
•	2
France	since June 1983
Germany	since July 1983
Italy	since March 1985
Japan	since February 1991
Sweden	since October 1983
Switzerland	since February 1987
United States	since August 1985

6. Last year 153 IRS reports were received. The events reported were attributable to one or a combination of the following:

Mechanical failure	58%
Human factors	29%
Electrical failure	18%
Instrumentation failure	14%
Fire and chemical reactions	10%
Hydraulic failure	8%
Environmental conditions inside the plant	3%
Core physics failure	1%
Environmental conditions outside the plant	0.7%

Note: As some events were attributable to more than one factor, the percentages add up to more than 100%.

THE INTERNATIONAL NUCLEAR EVENT SCALE (INES)

Background

1. INES was developed by the Agency and the Nuclear Energy Agency of the Organisation for Economic Co-operation and Development (NEA/OECD), with the help of experts from Member States, for the purpose of facilitating rapid communication on nuclear events between the nuclear community, the media and the public. Events are classified as being "out of scale", "below scale" or "on scale". Events "out of scale" do not have any nuclear safety relevance. Events "below scale" are safety-relevant, but not safety-significant. Events "on scale" - i.e. of safety significance - are categorized on the basis of their consequences: defence-in-depth degradation; on-site impact; and off-site impact. "On scale" events are categorized at seven levels - those categorized at levels 1 to 3 are termed "incidents", and those categorized at levels 4 to 7 are termed "accidents".¹

2. Fifty-two States have now officially informed the Agency that their regulators and operators are using INES. As a result of the extension of INES to non-reactor facilities on a trial basis, in March 1992, more countries have joined the INES Information System. An updated list of participants in the INES Information System is given at the end of this Annex.

3. The media appear to have had no major difficulties in using INES when reporting on nuclear events, and INES is gaining acceptance by the public.

4. The time taken to rate nuclear events has been reduced, but there is still room for improvement. Efforts to minimize delays should continue. If necessary, a provisional rating should be given, particularly when an event is attracting media interest.²

¹ In 1992 the INES Information System received 72 notifications of operational events. Of the 42 events "on-scale" (i.e. above the threshold of safety significance), two were of level 3, 13 of level 2 and 27 of level 1. Twenty-eight events were stated to be "below scale" and two to be "out of scale". Among the level 0-3 rated events, 40 were rated on the basis of defence-in-depth degradation, one was rated on the basis of on-site impacts and one was associated with off-site impact (more details are given in the Nuclear Safety Review 1993).

² Following an event at the Leningrad nuclear power plant in March 1992, an INES rating was available within a few hours. This helped to prevent media over-reaction.

Developments since the 1992 session of the General Conference

5. A review was carried out in October 1992 of the ratings given to a number of nuclear events. On the basis of the information provided to the INES Information System, there was consensus that in some cases the rating should have been different by one level. However, there was no evidence of consistent under-rating or over-rating of events. In a few cases, insufficient information had been provided for the event in question to be rated.

6. The first meeting of the INES Advisory Committee³ took place from 29 to 31 March 1993. A review of the information provided since October 1992 confirmed the satisfactory application of INES to all types of nuclear events at nuclear power plants and other nuclear facilities. It was concluded, however, that some refinement of the INES rating procedure might be necessary at the end of the period of trial extension of INES to non-reactor facilities (see para. 2 above).⁴

7. The INES Advisory Committee also considered the idea of extending INES to cover industrial as opposed to nuclear - safety aspects of the events occurring at nuclear facilities. While recognizing the potential value of a scale reflecting the safety significance for the public of any event, nuclear or non-nuclear, the Committee concluded that the development of an "Industrial Event Scale" - if undertaken - should be conducted independently of activities relating to INES.

Transparency

8. In most countries, the emphasis on confidentiality traditionally associated with the reporting of nuclear events is gradually declining, thanks to the availability of an internationally agreed technical "language" which prevents misunderstandings about safety significance. INES is playing an important part in this process.

³ The role of the Committee, which was established in 1992 and consists of a small number of experts familiar with the development and application of the INES rating procedures for both reactor and non-reactor installations, is - inter alia - to assist the Agency INES Co-ordinator in clarifying the guidance contained in the INES Users' Manual at the request of INES National Officers (see paras 3-5 in Annex 4 to document GC(XXXVI)/INF/309) and to provide advice, at the request of INES National Officers, on the consistency of the rating of an event.

⁴ To assist INES National Officers in ensuring consistency in the safety significance rating of nuclear events by facility operators, the Agency will continue to offer seminars on the use of INES.

PARTICIPANTS IN THE INTERNATIONAL NUCLEAR EVENT SCALE (INES) INFORMATION SYSTEM

COUNTRY	STARTING DATE	FAX NUMBER
Argentina	January 1991	0054 1 544 92 52
Austria Bangladesh	March 1991 November 1992	43 1 713 79 52 0088 02 863051
Belarus	January 1993	007 0172 467615
Belgium	June 1990	0032 253 68 585
Brazil	January 1991	0055 21 546 23 79
Bulgaria	January 1991	0035 92 72 35 23
Canada	October 1990	001 416 506 65 90
Chile	September 1992	0056 26 99 16 18
China	March 1991	0086 1 851 37 17
Costa Rica	January 1993	00506 229625
Czech Republic	October 1990	0042 2 255 262
Denmark Egypt	October 1990 October 1990	0045 45 82 65 65 0020 2 354 09 82
Egypt Finland	June 1990	00358 0 708 23 92
France	May 1990	0033 1 43194869
Germany	January 1991	0049 221 206 84 42
Greece	September 1992	00301 65 44 525 or 65 44 520
Guatemala	October 1992	00502 2 762007
Hungary	January 1991	0036 11 42 75 98
India	January 1991	0091 22 556 07 50
Iran, Islamic Rep.	September 1992	0098 21 8000404
Ireland	January 1993	00353 1 2697437
Italy	January 1991	0039 6 500 72 916
Japan Kanan Ban af	July 1991	0081 3 3581 24 87 & 3503 73 66
Korea, Rep. of Kuwait	January 1991 October 1992	0082 2 503 76 73 00965 2461 761
Lithuania	February 1993	0037001266 29350
Luxembourg	March 1992	00352 454794
Mexico	January 1991	0052 5 5906103
Netherlands	August 1990	0031 70 333 40 18
Norway	October 1992	0047 67 147407
Pakistan	October 1990	0092 51 82 49 08
Peru	September 1992	0051 14 885233
Poland	September 1992	0048 2 6144252
Romania Russian Federation	April 1991 September 1990	0040 1 7813476 007 095 274 00 71
Saudi Arabia	September 1990	00966 1 4882681
Slovak Republic	March 1993	0042 7 221560
Slovenia	October 1990	0030 61 343 667
South Africa	March 1991	0027 12 663 55 13
Spain	October 1990	0034 1 346 05 88
Sri Lanka	October 1992	0094 1 501 468
Sweden	October 1990	0046 8 661 90 86
Switzerland	October 1990	0041 56 99 39 07 & 0041 12 56 94 97
Syrian Arab Rep.	August 1992	00963 11 24 93 17
Turkey	April 1991	0090 4 127 28 34
Ukraine UK	March 1992 November 1990	007 044 2121094 0044 71 7274116; 0044 452 654914
UK USA	October 1992	001 301 492 7142
Viet Nam	August 1992	001 501 492 7142
Zaire	August 1992 August 1992	
ORGANIZATION	STARTING DATE	FAX NUMBER
CEC Luxambaura	September 1000	00432 4301 4646 0
CEC Luxembourg	September 1990 November 1992	00432 4301 4646 (Lux) 0033 1 42 890400
Nuclear Publications NucNet Berne	November 1992 December 1991	0033 1 42 890400 0041 31 212758
OECD Paris	March 1990	0033 1 45 24 11 10
USCEA	February 1992	001 202 785 4019
WANO London	September 1990	0044 71 828 6691
Chairman INES		0044 452 652560
Chairman INES Adv. Committee		0044 452 652560
INES Co-ordinator (IAEA)		43 1 23 09 723