Radiotracers for the environmental management of coasts and water bodies

Dr Cath Hughes

Australian Nuclear Science and Technology Organisation

International Atomic Energy Agency Scientific Forum

ATOMS IN INDUSTRY

Radiation Technology for Development

15-16 September 2015, Vienna, Austria

What is radiotracing?

Why are radiotracers useful?

- Unique no/low natural background
- Direct analogue for chemical under study
- V small mass so no toxicity/concentration effects
- Easily detected in situ or in samples
- Short half life = no memory effect

Hydrodynamics & effluent dispersion						
^{99m} Tc	⁸² Br	¹⁹⁸ Au				
131	³ H					

Sediment transport						
¹⁹² lr	¹⁹⁸ Au	⁴⁶ Sc				
¹⁸¹ Hf	⁵¹ Cr	^{110m} Ag				

Biological and chemical uptake							
⁶⁵ Zn	⁵⁹ Fe	²⁰³ Hg	¹⁰⁹ Cd	⁷⁵ Se	⁵⁴ Mn	³⁵ S	
¹³⁴ Cs	⁶⁰ Co	¹³³ Ba	⁴⁸ V	³² P	³ H	¹⁴ C	

Radiotracers are sometimes isotopes not found in nature or produced in the nuclear industry

Radiotracing outside the lab

Is it safe for the environment?

- Concentration factor (Bq/kg per Bq/L)
- Dose conversion coeff (μGy/h per Bq/kg)

IMMERSION

 Dose conversion coeff (μGy/h per Bq/L)

EXTERNAL =

DETERMINE EXPOSURE

- Radionuclide conc. (Bq/L,kg)
- Organism geometry
- Habitat factors (surface, benthic, water column)
- Occupancy factor (%)

IS IT A RISK?

- Dose:response data
- Dose guidelines

TOTAL DOSE

We now have the tools to ensure that doses for all organisms will ensure no adverse effects

Tracing sewage effluent

Tracing sewage effluent

Gold-198 and tritium used to trace sewage in Hong Kong

Wetland flow and nutrients

Streamflows & reactive transport

Säva Brook

Fig. 5. Breakthrough curve of the mass inventory in the bed sediment (0-10 cm) at station A (a) tritium (b) chromium.

Future development in tracers

¹⁹⁸Au nano particles coated with SiO₂
120nm dia – suspended sediment tracer

Bulk, ionic and nano ¹⁴¹Ce to study contaminant pathways in aquatic ecosystems

Study with Dr. Lisa Golding from CSIRO Land and Water Flagship

