

Agence internationale de l'énergie atomique

CIRCULAIRE D'INFORMATION

INFCIRC/209/Rev.1/Mod.2 8 juillet 1994

Distr. GENERALE

FRANCAIS

Original: ANGLAIS, ESPAGNOL

et FRANÇAIS

COMMUNICATIONS REÇUES D'ETATS MEMBRES CONCERNANT L'EXPORTATION DE MATIERES NUCLEAIRES ET DE CERTAINES CATEGORIES D'EQUIPEMENTS ET D'AUTRES MATIERES

- 1. Le Directeur général a reçu des lettres que les Représentants permanents auprès de l'Agence internationale de l'énergie atomique des pays suivants lui ont adressées au sujet de l'exportation de matières nucléaires et de certaines catégories d'équipements et d'autres matières : une lettre datée du 28 février 1994 du Représentant permanent de la France; des lettres datées du ler mars 1994 des Représentants permanents de l'Allemagne, de l'Australie, de l'Autriche, de la Bulgarie, du Canada, du Danemark, de l'Espagne, des Etats-Unis d'Amérique, de la Finlande, de la Grèce, de la Hongrie, de l'Irlande, du Japon, du Luxembourg, de la Norvège, des Pays-Bas, de la Pologne, du Portugal, de la République tchèque, du Royaume-Uni de Grande-Bretagne et d'Irlande du Nord, et de la Suède; une lettre datée du 22 mars 1994 du Représentant permanent de la Roumanie.
- 2. Conformément au souhait exprimé à la fin de chacune d'entre elles, le texte de ces lettres est joint en appendice.

LETTRE

J'ai l'honneur de me référer à la (aux) [communication(s) précédente(s) sur le même sujet] du Représentant permanent de [nom de l'Etat Membre] auprès de l'Agence internationale de l'énergie atomique.

Pendant les années qui se sont écoulées depuis que les procédures décrites dans le document INFCIRC/209 ont été formulées en ce qui concerne l'exportation de certaines catégories d'équipements et de matières spécialement conçus ou préparés pour le traitement, l'utilisation ou l'obtention de produits fissiles spéciaux, l'évolution de la technologie nucléaire a fait naître la nécessité de préciser certaines parties de la Liste de base incorporée initialement au mémorandum B du document INFCIRC/209. Ces précisions ont fait l'objet des documents INFCIRC/209/Mod.1, 2, 3 et 4 (dont le document INFCIRC/209/Rev.1 fait la synthèse) et du document INFCIRC/209/Rev.1/Mod.1.

Mon Gouvernement juge maintenant souhaitable d'apporter des précisions sur les parties de la Liste de base qui concernent les équipements spécialement conçus ou préparés pour la séparation des isotopes de l'uranium ainsi que les pompes de circuit primaire. Je souhaite donc vous informer que les sections actuelles 1 et 5 de l'annexe au document INFCIRC/209/Rev.1 (Précisions concernant des articles énumérés dans la Liste de base) doivent être remplacées par le texte reproduit dans l'annexe à la présente lettre.

Comme il l'a fait jusqu'à présent, mon Gouvernement se réserve le droit d'interpréter et d'appliquer à sa discrétion les procédures indiquées et de contrôler, s'il le souhaite, l'exportation d'articles pertinents autres que ceux qui sont énumérés dans l'annexe susmentionnée à la présente lettre.

[Le Gouvernement (adjectif ou nom de l'Etat Membre), dans la mesure où les échanges au sein de l'Union européenne sont concernés, appliquera ces procédures en tenant compte des engagements qu'il a contractés en sa qualité de membre de cette Union.]^{1/2}

Je vous serais reconnaissant de bien vouloir porter le texte de la présente lettre et de son annexe à la connaissance de tous les Etats Membres pour leur information.

Cet alinéa ne figure que dans les lettres adressées par les Gouvernements de l'Allemagne, de la Belgique, du Danemark, de l'Espagne, de la France, de la Grèce, de l'Irlande, de l'Italie, du Luxembourg, des Pays-Bas, du Portugal et du Royaume-Uni de Grande-Bretagne et d'Irlande du Nord.

ANNEXE

PRECISIONS CONCERNANT DES ARTICLES ENUMERES DANS LA LISTE DE BASE

(conformément à la section 2 du mémorandum B)

1. REACTEURS ET EQUIPEMENTS POUR REACTEURS

1.1. Réacteurs nucléaires complets

Réacteurs nucléaires pouvant fonctionner de manière à maintenir une réaction de fission en chaîne auto-entretrenue contrôlée, exception faite des réacteurs de puissance nulle dont la production maximale prévue de plutonium ne dépasse pas 100 grammes par an.

Note explicative

Un "réacteur nucléaire" comporte essentiellement les articles se trouvant à l'intérieur de la cuve de réacteur ou fixés directement sur cette cuve, le matériel pour le réglage de la puissance dans le coeur, et les composants qui renferment normalement le fluide de refroidissement primaire du coeur du réacteur, entrent en contact direct avec ce fluide ou permettent son réglage.

Il n'est pas envisagé d'exclure les réacteurs qu'il serait raisonnablement possible de modifier de façon à produire une quantité de plutonium sensiblement supérieure à 100 grammes par an. Les réacteurs conçus pour un fonctionnement prolongé à des niveaux de puissance significatifs, quelle que soit leur capacité de production de plutonium, ne sont pas considérés comme étant des "réacteurs de puissance nulle".

Exportations

L'exportation du jeu complet d'articles importants ainsi délimité n'aura lieu que conformément aux procédures énoncées dans les Directives. Les divers articles de cet ensemble fonctionnellement délimité, qui ne seront exportés que conformément aux procédures énoncées dans les Directives, sont énumérés sous 1.2 à 1.7. Le Gouvernement se réserve le droit d'appliquer les procédures énoncées dans les Directives à d'autres articles dudit ensemble fonctionnellement délimité.

1.2. Cuves de pression pour réacteurs

Cuves métalliques, sous forme d'unités complètes ou d'importants éléments préfabriqués, qui sont spécialement conçues ou préparées pour contenir le coeur d'un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, et qui sont capables de résister à la pression de travail du fluide de refroidissement primaire.

Note explicative

La plaque de couverture d'une cuve de pression de réacteur tombe sous 1.2 en tant qu'élément préfabriqué important d'une telle cuve.

Les internes d'un réacteur (tels que colonnes et plaques de support du coeur et autres internes de la cuve, tubes guides pour barres de commande, écrans thermiques, déflecteurs, plaques à grille du coeur, plaques de diffuseur, etc.) sont normalement livrés par le fournisseur du réacteur. Parfois, certains internes de supportage sont inclus dans la fabrication de la cuve de pression. Ces articles sont d'une importance suffisamment cruciale pour la sûreté et la fiabilité du fonctionnement d'un réacteur (et, partant, du point de vue des garanties données et de la responsabilité assumée par le fournisseur du réacteur) pour que leur fourniture en marge de l'accord fondamental de fourniture du réacteur lui-même ne soit pas de pratique courante. C'est pourquoi, bien que la fourniture séparée de ces articles uniques, spécialement conçus et préparés, d'une importance cruciale, de grandes dimensions et d'un prix élevé ne soit pas nécessairement considérée comme exclue du domaine en question, ce mode de fourniture est jugé peu probable.

1.3. Machines pour le chargement et le déchargement du combustible nucléaire

Matériel de manutention spécialement conçu ou préparé pour introduire ou extraire le combustible d'un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, et qui peut être utilisé en marche ou est doté de dispositifs techniques perfectionnés de positionnement ou d'alignement pour permettre des opérations complexes de chargement à l'arrêt, telles que celles au cours desquelles il est normalement impossible d'observer le combustible directement ou d'y accéder.

1.4. Barres de commande pour réacteurs

Barres spécialement conçues ou préparées pour le réglage de la vitesse de réaction dans un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus.

Note explicative

Cet article comprend, outre l'absorbeur de neutrons, les structures de support ou de suspension de l'absorbeur, si elles sont fournies séparément.

1.5. Tubes de force pour réacteurs

Tubes spécialement conçus ou préparés pour contenir les éléments combustibles et le fluide de refroidissement primaire d'un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, à des pressions de travail supérieures à 5,1 MPa (740 psi).

1.6. Tubes de zirconium

Zirconium métallique et alliages à base de zirconium, sous forme de tubes ou d'assemblages de tubes, fournis en quantités supérieures à 500 kg pendant une période de 12 mois, spécialement conçus ou préparés pour être utilisés dans un réacteur nucléaire au sens donné à cette expression sous 1.1 ci-dessus, et dans lesquels le rapport hafnium/zirconium est inférieur à 1/500 parties en poids.

1.7. Pompes du circuit primaire

Pompes spécialement conçues ou préparées pour faire circuler le fluide de refroidissement primaire pour réacteurs nucléaires au sens donné à cette expression sous 1.1 ci-dessus.

Note explicative

Les pompes spécialement conçues ou préparées peuvent comprendre des systèmes complexes à dispositifs d'étanchéité simples ou multiples destinés à éviter les fuites du fluide de refroidissement primaire, des pompes à rotor étanche et des pompes dotées de systèmes à masse d'inertie. Cette définition englobe les pompes conformes à la norme NC-1 ou à des normes équivalentes.

5. USINES DE SEPARATION DES ISOTOPES DE L'URANIUM ET MATERIEL, AUTRE QUE LES APPAREILS D'ANALYSE, SPECIALEMENT CONÇUS OU PREPARES A CETTE FIN

Articles considérés comme tombant dans la catégorie visée par le membre de phrase "et matériel, autre que les appareils d'analyse, spécialement conçu ou préparé" pour la séparation des isotopes de l'uranium :

5.1. Centrifugeuses et assemblages et composants spécialement conçus ou préparés pour utilisation dans les centrifugeuses

Note d'introduction

Ordinairement, la centrifugeuse se compose d'un ou de plusieurs cylindres à paroi mince, d'un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces), placés dans une enceinte à vide et tournant à grande vitesse périphérique de l'ordre de 300 m/s ou plus autour d'un axe vertical. Pour atteindre une grande vitesse, les matériaux constitutifs des composants tournants doivent avoir un rapport résistance-densité élevé et l'assemblage rotor, et donc ses composants, doivent être usinés avec des tolérances très serrées pour minimiser les écarts par rapport à l'axe. A la différence d'autres centrifugeuses, la centrifugeuse utilisée pour l'enrichissement de l'uranium se caractérise par la présence dans le bol d'une ou de plusieurs chicanes tournantes en forme de disque, d'un ensemble de tubes fixe servant à introduire et à prélever l'UF₆ gazeux et d'au moins trois canaux séparés, dont deux sont connectés à des écopes s'étendant de l'axe à la périphérie du bol. On trouve aussi dans l'enceinte à vide plusieurs articles critiques qui ne tournent pas et qui, bien qu'ils soient conçus spécialement, ne sont pas difficiles à fabriquer et ne sont pas non plus composés de matériaux spéciaux. Toutefois, une installation d'ultracentrifugation nécessite un grand nombre de ces composants, de sorte que la quantité peut être une indication importante de l'utilisation finale.

5.1.1. Composants tournants

a) Assemblages rotors complets

Cylindres à paroi mince, ou ensembles de cylindres à paroi mince réunis, fabriqués dans un ou plusieurs des matériaux à rapport résistance-densité élevé décrits dans la note explicative; lorsqu'ils sont réunis, les cylindres sont joints les uns aux autres par les soufflets ou anneaux flexibles décrits sous 5.1.1 c) ci-après. Le bol est équipé d'une ou de plusieurs chicanes internes et de bouchons d'extrémité, comme indiqué sous 5.1.1 d) et e) ci-après, s'il est prêt à l'emploi. Toutefois, l'assemblage complet peut être livré partiellement monté seulement;

b) Bols

Cylindres à paroi mince d'une épaisseur de 12 mm (0,5 pouce) ou moins, spécialement conçus ou préparés, ayant un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces) et fabriqués dans un ou plusieurs des matériaux à rapport résistance-densité élevé décrits dans ia note explicative;

c) Anneaux ou soufflets

Composants spécialement conçus ou préparés pour fournir un support local au bol ou pour joindre ensemble plusieurs cylindres constituant le bol. Le soufflet est un cylindre court ayant une paroi de 3 mm (0,12 pouce) ou moins d'épaisseur, un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces) et une spire, et fabriqué dans l'un des matériaux ayant un rapport résistance-densité élevé décrit dans la <u>note explicative</u>;

d) Chicanes

Composants en forme de disque d'un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces) spécialement conçus ou préparés pour être montés à l'intérieur du bol de la centrifugeuse afin d'isoler la chambre de prélèvement de la chambre de séparation principale et, dans certains cas, de faciliter la circulation de l'UF₆ gazeux à l'intérieur de la chambre de séparation principale du bol, et fabriqués dans l'un des matériaux ayant un rapport résistance-densité élevé décrit dans la note explicative;

e) Bouchons d'extrémité supérieurs et inférieurs

Composants en forme de disque d'un diamètre compris entre 75 mm (3 pouces) et 400 mm (16 pouces) spécialement conçus ou préparés pour s'adapter aux extrémités du bol et maintenir ainsi l'UF₆ à l'intérieur de celui-ci et, dans certains cas, pour porter, retenir ou contenir en tant que partie intégrante un élément du palier supérieur (bouchon supérieur) ou pour porter les éléments tournants du moteur et du palier inférieur (bouchon inférieur), et fabriqués dans l'un des matériaux ayant un rapport résistance-densité élevé décrit dans la note explicative.

Note explicative

Les matériaux utilisés pour les composants tournants des centrifugeuses sont :

- a) Les aciers martensitiques vieillissables ayant une charge limite de rupture égale ou supérieure à 2,05·10° N/m² (300 000 psi) ou plus;
- b) Les alliages d'aluminium ayant une charge limite de rupture égale ou supérieure à 0,46·10° N/m² (67 000 psi) ou plus;
- c) Des matériaux filamenteux pouvant être utilisés dans des structures composites et ayant un module spécifique égal ou supérieur à 12,3 10⁶ m, et une charge limite de rupture spécifique égale ou supérieure à 0,3 10⁶ m (le "module spécifique" est le module de Young exprimé en N/m² divisé par le poids volumique exprimé en N/m³; la "charge limite de rupture spécifique" est la charge limite de rupture exprimée en N/m² divisée par le poids volumique exprimé en N/m³).

5.1.2. Composants fixes

a) Paliers de suspension magnétique

Assemblages de support spécialement conçus ou préparés comprenant un aimant annulaire suspendu dans un carter contenant un milieu amortisseur. Le carter est fabriqué dans un matériau résistant à l'UF₆ (voir la <u>note explicative</u> de la

section 5.2). L'aimant est couplé à une pièce polaire ou à un deuxieme aimant fixé sur le bouchon d'extrémité supérieur décrit sous 5.1.1 e). L'aimant annulaire peut avoir un rapport entre le diamètre extérieur et le diamètre intérieur inférieur ou égal à 1,6:1. L'aimant peut avoir une perméabilité initiale égale ou supérieure à 0,15 H/m (120 000 en unités CGS), ou une rémanence égale ou supérieure à 98,5 % ou une densité d'énergie électromagnétique supérieure à 80 kJ/m³ (10⁷ gauss-oersteds). Outre les propriétés habituelles du matériau, une condition essentielle est que la déviation des axes magnétiques par rapport aux axes géométriques soit limitée par des tolérances très serrées (inférieures à 0,1 mm ou 0,004 pouce) ou que l'homogénéité du matériau de l'aimant soit spécialement imposée;

b) Paliers de butée/amortisseurs

Paliers spécialement conçus ou préparés comprenant un assemblage pivot/coupelle monté sur un amortisseur. Le pivot se compose habituellement d'un arbre en acier trempé comportant un hémisphère à une extrémité et un dispositif de fixation au bouchon inférieur décrit sous 5.1.1 e) à l'autre extrémité. Toutefois, l'arbre peut être équipé d'un palier hydrodynamique. La coupelle a la forme d'une pastille avec indentation hémisphérique sur une surface. Ces composants sont souvent fournis indépendamment de l'amortisseur;

c) Pompes moléculaires

Cylindres spécialement conçus ou préparés qui comportent sur leur face interne des rayures hélicoïdales obtenues par usinage ou extrusion et dont les orifices sont alésés. Leurs dimensions habituelles sont les suivantes : diamètre interne compris entre 75 mm (3 pouces) et 400 mm (16 pouces), épaisseur de paroi égale ou supérieure à 10 mm et longueur égale ou supérieure au diamètre. Habituellement, les rayures ont une section rectangulaire et une profondeur égale ou supérieure à 2 mm (0,08 pouce);

d) Stators de moteur

Stators annulaires spécialement conçus ou préparés pour des moteurs grande vitesse à hystérésis (ou à réluctance) alimentés en courant alternatif multiphasé pour fonctionnement synchrone dans le vide avec une gamme de fréquence de 600 à 2 000 Hz, et une gamme de puissance de 50 à 1 000 VA. Les stators sont constitués par des enroulements multiphasés sur des noyaux de fer doux feuilletés constitués de couches minces dont l'épaisseur est habituellement inférieure ou égale à 2 mm (0,08 pouce).

e) Enceintes de centrifugeuse

Composants spécialement conçus ou préparés pour contenir l'assemblage rotor d'une centrifugeuse. L'enceinte est constituée d'un cylindre rigide possédant une paroi d'au plus de 30 mm (1,2 pouce) d'épaisseur, ayant subi un usinage de précision aux extrémités en vue de recevoir les paliers et qui est muni d'une ou plusieurs brides pour le montage. Les extrémités usinées sont parallèles entre elles et perpendiculaires à l'axe longitudinal du cylindre avec une déviation au

plus égale à 0,05 degré. L'enceinte peut également être formée d'une structure de type alvéolaire permettant de loger plusieurs bols. Les enceintes sont constituées ou revêtues de matériaux résistant à la corrosion par l'UF₆.

f) Ecopes

Tubes ayant un diamètre interne d'au plus 12 mm (0,5 pouce), spécialement conçus ou préparés pour extraire l'UF₆ gazeux contenu dans le bol selon le principe du tube de Pitot (c'est-à-dire que leur ouverture débouche dans le flux gazeux périphérique à l'intérieur du bol, configuration obtenue par exemple en courbant l'extrémité d'un tube disposé selon le rayon) et pouvant être raccordés au système central de prélèvement du gaz. Les tubes sont constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆.

5.2. Systèmes, matériel et composants auxiliaires spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par ultracentrifugation

Note d'introduction

Les systèmes, matériel et composants auxiliaires d'une usine d'enrichissement par ultracentrifugation sont les systèmes nécessaires pour introduire l'UF₆ dans les centrifugeuses, pour relier les centrifugeuses les unes aux autres en cascades pour obtenir des taux d'enrichissement de plus en plus élevés et pour prélever l'UF₆ dans les centrifugeuses en tant que "produit" et "résidus", ainsi que le matériel d'entraînement des centrifugeuses et de commande de l'usine.

Habituellement, l'UF₆ est sublimé au moyen d'autoclaves chauffés et réparti à l'état gazeux dans les diverses centrifugeuses grâce à un collecteur tubulaire de cascade. Les flux de "produit" et de "résidus" sortant des centrifugeuses sont aussi acheminés par un collecteur tubulaire de cascade vers des pièges à froid (fonctionnant à environ 203 K (-70 °C)) où l'UF₆ est condensé avant d'être transféré dans des conteneurs de transport ou de stockage. Etant donné qu'une usine d'enrichissement contient plusieurs milliers de centrifugeuses montées en cascade, il y a plusieurs kilomètres de tuyauteries comportant des milliers de soudures, ce qui suppose une répétitivité considérable du montage. Les matériel, composants et tuyauteries sont fabriqués suivant des normes très rigoureuses de vide et de propreté.

5.2.1. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus

Systèmes spécialement conçus ou préparés comprenant :

Des autoclaves (ou stations) d'alimentation, utilisés pour introduire l'UF₆ dans les cascades de centrifugeuses à une pression allant jusqu'à 100 kPa (15 psi) et à un débit égal ou supérieur à 1 kg/h;

Des pièges à froid utilisés pour prélever l'UF₆ des cascades à une pression allant jusqu'à 3 kPa (0,5 psi). Les pièges à froid peuvent être refroidis jusqu'à 203 K (-70 °C) et chauffés jusqu'à 343 K (70 °C);

Des stations "Produit" et "Résidus" pour le transfert de l'UF₆ dans des conteneurs.

Ce matériel et ces tuyauteries sont constitués entièrement ou revêtus intérieurement de matériaux résistant à l'UF₆ (voir la <u>note explicative</u> de la présente section) et sont fabriqués suivant des normes très rigoureuses de vide et de propreté.

5.2.2. Collecteurs/tuyauteries

Tuyauteries et collecteurs spécialement conçus ou préparés pour la manipulation de l'UF₆ à l'intérieur des cascades de centrifugeuses. La tuyauterie est habituellement du type collecteur "triple", chaque centrifugeuse étant connectée à chacun des collecteurs. La répétitivité du montage du système est donc grande. Le système est constitué entièrement de matériaux résistant à l'UF₆ (voir la <u>note explicative</u> de la présente section) et est fabriqué suivant des normes très rigoureuses de vide et de propreté.

5.2.3. Spectromètres de masse pour UF_a/sources d'ions

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF₆ gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1. Pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320
- 2. Sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées
- 3. Sources d'ionisation par bombardement électronique
- 4. Présence d'un collecteur adapté à l'analyse isotopique.

5.2.4. Convertisseurs de fréquence

Convertisseurs de fréquence spécialement conçus ou préparés pour l'alimentation des stators de moteurs décrits sous 5.1.2 d), ou parties, composants et sous-assemblages de convertisseurs de fréquence, ayant toutes les caractéristiques suivantes :

- 1. Sortie multiphasée de 600 à 2 000 Hz
- 2. Stabilité élevée (avec un contrôle de la fréquence supérieur à 0,1 %)
- 3. Faible distorsion harmonique (inférieure à 2 %)
- 4. Rendement supérieur à 80 %.

Note explicative

Les articles énumérés ci-dessus, soit sont en contact direct avec l'UF₆ gazeux, soit contrôlent directement les centrifugeuses et le passage du gaz d'une centrifugeuse à l'autre et d'une cascade à l'autre.

Les matériaux résistant à la corrosion par l'UF₆ comprennent l'acier inoxydable, l'aluminium, les alliages d'aluminium, le nickel et les alliages contenant 60 % ou plus de nickel.

5.3. Assemblages et composants spécialement conçus ou préparés pour utilisation dans l'enrichissement par diffusion gazeuse

Note d'introduction

Dans la méthode de séparation des isotopes de l'uranium par diffusion gazeuse, le principal assemblage du procédé est constitué par une barrière poreuse spéciale de diffusion gazeuse, un échangeur de chaleur pour refroidir le gaz (qui est échauffé par la compression), des vannes d'étanchéité et des vannes de réglage ainsi que des tuyauteries. Etant donné que le procédé de la diffusion gazeuse fait appel à l'hexafluorure d'uranium (UF₆), toutes les surfaces des équipements, tuyauteries et instruments (qui sont en contact avec le gaz) doivent être constituées de matériaux qui restent stables en présence d'UF₆. Une installation de diffusion gazeuse nécessite un grand nombre d'assemblages de ce type, de sorte que la quantité peut être une indication importante de l'utilisation finale.

5.3.1. Barrières de diffusion gazeuse

- a) Filtres minces et poreux spécialement conçus ou préparés, qui ont des pores d'un diamètre de 100 à 1 000 Å (angströms), une épaisseur égale ou inférieure à 5 mm (0,2 pouce) et, dans le cas des formes tubulaires, un diamètre égal ou inférieur à 25 mm (1 pouce) et sont constitués de matériaux métalliques, polymères ou céramiques résistant à la corrosion par l'UF₆.
- b) Composés ou poudres préparés spécialement pour la fabrication de ces filtres. Ces composés et poudres comprennent le nickel et des alliages contenant 60 % ou plus de nickel, l'oxyde d'aluminium et les polymères d'hydrocarbures totalement fluorés ayant une pureté égale ou supérieure à 99,9 %, une taille des grains inférieure à 10 microns et une grande uniformité de cette taille, qui sont spécialement préparés pour la fabrication de barrières de diffusion gazeuse.

5.3.2. Diffuseurs

Enceintes spécialement conçues ou préparées, hermétiquement scellées, de forme cylindrique et ayant plus de 300 mm (12 pouces) de diamètre et plus de 900 mm (35 pouces) de long, ou de forme rectangulaire avec des dimensions comparables, qui sont dotées d'un raccord d'entrée et de deux raccords de sortie ayant tous plus de 50 mm (2 pouces) de diamètre, prévues pour contenir la barrière de diffusion gazeuse, constituées ou revêtues intérieurement de matériaux résistant à l'UF₆ et conçues pour être installées horizontalement ou verticalement.

5.3.3. Compresseurs et soufflantes à gaz

Compresseurs axiaux, centrifuges ou volumétriques et soufflantes à gaz spécialement conçus ou préparés, ayant une capacité d'aspiration de 1 m³/min ou plus d'UF₆ et une pression de sortie pouvant aller jusqu'à plusieurs centaines de kPa (100 psi), conçus pour fonctionner longtemps en atmosphère d'UF₆, avec ou sans moteur électrique de puissance appropriée, et assemblages séparés de compresseurs et soufflantes à gaz de ce type. Ces compresseurs et soufflantes à gaz ont un rapport de compression compris entre 2/1 et 6/1 et sont constitués ou revêtus intérieurement de matériaux résistant à l'UF₆.

5.3.4. Garnitures d'étanchéité d'arbres

Garnitures à vide spécialement conçues ou préparées, avec connexions d'alimentation et d'échappement, pour assurer de manière fiable l'étanchéité de l'arbre reliant le rotor du compresseur ou de la soufflante à gaz au moteur d'entraînement en empêchant l'air de pénétrer dans la chambre intérieure du compresseur ou de la soufflante à gaz qui est remplie d'UF₆. Ces garnitures sont normalement conçues pour un taux de pénétration de gaz tampon inférieur à 1 000 cm³/min (60 pouces cubes/min).

5.3.5. Echangeurs de chaleur pour le refroidissement de l'UF₆

Echangeurs de chaleur spécialement conçus ou préparés, constitués ou revêtus intérieurement de matériaux résistant à l'UF₆ (à l'exception de l'acier inoxydable) ou de cuivre ou d'une combinaison de ces métaux et prévus pour un taux de variation de la pression due à une fuite qui est inférieur à 10 Pa (0,0015 psi) par heure pour une différence de pression de 100 kPa (15 psi).

5.4. Systèmes, matériel et composants auxiliaires spécialement conçus ou préparés pour utilisation dans l'enrichissement par diffusion gazeuse

Note d'introduction

Les systèmes, le matériel et les composants auxiliaires des usines d'enrichissement par diffusion gazeuse sont les systèmes nécessaires pour introduire l'UF₆ dans l'assemblage de diffusion gazeuse, pour relier les assemblages les uns aux autres en cascades (ou étages) afin d'obtenir des taux d'enrichissement de plus en plus élevés, et pour prélever l'UF₆ dans les cascades de diffusion en tant que "produit" et "résidus". En raison des fortes propriétés d'inertie des cascades de diffusion, toute interruption de leur fonctionnement, et en particulier leur mise à l'arrêt, a de sérieuses conséquences. Le maintien d'un vide rigoureux et constant dans tous les systèmes du procédé, la protection automatique contre les accidents et le réglage automatique précis du flux de gaz revêtent donc une grande importance dans une usine de diffusion gazeuse. Tout cela oblige à équiper l'usine d'un grand nombre de systèmes spéciaux de commande, de régulation et de mesure.

Habituellement, l'UF₆ est sublimé à partir de cylindres placés dans des autoclaves et envoyé à l'état gazeux au point d'entrée grâce à un collecteur tubulaire de cascade. Les flux de "produit" et de "résidus" issus des points de sortie sont acheminés par un collecteur tubulaire de cascade vers les pièges à froid ou les stations de compression où l'UF₆ gazeux est liquéfié avant d'être transféré dans des conteneurs de transport ou de stockage appropriés. Etant donné qu'une usine d'enrichissement par diffusion gazeuse contient un grand nombre d'assemblages de diffusion gazeuse disposés en cascades, il y a plusieurs kilomètres de tuyauteries comportant des milliers de soudures, ce qui suppose une répétitivité considérable du montage. Le matériel, composants et tuyauteries sont fabriqués suivant des normes très rigoureuses de vide et de propreté.

5.4.1. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus

Systèmes spécialement conçus ou préparés, capables de fonctionner à des pressions égales ou inférieures à 300 kPa (45 psi) et comprenant :

Des autoclaves (ou systèmes) d'alimentation utilisés pour introduire l'UF₆ dans les cascades de diffusion gazeuse;

Des pièges à froid utilisés pour prélever l'UF₆ des cascades de diffusion;

Des stations de liquéfaction où l'UF₆ gazeux provenant de la cascade est comprimé et refroidi pour obtenir de l'UF₆ liquide;

Des stations "Produit" ou "Résidus" pour le transfert de l'UF₆ dans des conteneurs.

5.4.2. Collecteurs/tuyauteries

Tuyauteries et collecteurs spécialement conçus ou préparés pour la manipulation de $l'UF_6$ à l'intérieur des cascades de diffusion gazeuse. La tuyauterie est normalement du type collecteur "double", chaque cellule étant connectée à chacun des collecteurs.

5.4.3. Systèmes à vide

- a) Grands distributeurs à vide, collecteurs à vide et pompes à vide ayant une capacité d'aspiration égale ou supérieure à 5 m³/min (175 pieds cubes/min), spécialement conçus ou préparés;
- b) Pompes à vide spécialement conçues pour fonctionner en atmosphère d'UF₆, constituées ou revêtues intérieurement d'aluminium, de nickel ou d'alliages comportant plus de 60 % de nickel. Ces pompes peuvent être rotatives ou volumétriques, être à déplacement et dotées de joints en fluorocarbures et être pourvues de fluides de service spéciaux.

5.4.4. Vannes spéciales d'arrêt et de réglage

Soufflets d'arrêt et de réglage, manuels ou automatiques, spécialement conçus ou préparés, constitués de matériaux résistant à l'UF₆ et ayant un diamètre compris entre 40 et 1 500 mm (1,5 à 59 pouces) pour installation dans des systèmes principaux et auxiliaires des usines d'enrichissement par diffusion gazeuse.

5.4.5. Spectromètres de masse pour UF₆/sources d'ions

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF₆ gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1. Pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320
- 2. Sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées

- 3. Sources d'ionisation par bombardement électronique
- 4. Collecteur adapté à l'analyse isotopique.

Note explicative

Les articles énumérés ci-dessus, soit sont en contact direct avec l'UF₆ gazeux, soit contrôlent directement le flux de gaz dans la cascade. Toutes les surfaces qui sont en contact avec le gaz de procédé sont constituées entièrement ou revêtues de matériaux résistant à l'UF₆. Aux fins des sections relatives aux articles pour diffusion gazeuse, les matériaux résistant à la corrosion par l'UF₆ comprennent l'acier inoxydable, l'aluminium, les alliages d'aluminium, l'oxyde d'aluminium, le nickel et les alliages contenant 60 % ou plus de nickel et les polymères d'hydrocarbures totalement fluorés résistant à l'UF₆.

5.5. Systèmes, matériel et composants spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par procédé aérodynamique

Note d'introduction

Dans les procédés d'enrichissement aérodynamiques, un mélange d'UF₆ gazeux et d'un gaz léger (hydrogène ou hélium) est comprimé, puis envoyé au travers d'éléments séparateurs dans lesquels la séparation isotopique se fait grâce à la production de forces centrifuges importantes le long d'une paroi courbe. Deux procédés de ce type ont été mis au point avec de bons résultats : le procédé à tuyères et le procédé vertex. Dans les deux cas, les principaux composants d'un étage de séparation comprennent des enceintes cylindriques qui renferment les éléments de séparation spéciaux (tuyères ou tubes vortex), des compresseurs et des échangeurs de chaleur destinés à évacuer la chaleur de compression. Une usine d'enrichissement par procédé aérodynamique nécessite un grand nombre de ces étages, de sorte que la quantité peut être une indication importante de l'utilisation finale. Etant donné que les procédés aérodynamiques font appel à l'UF₆, toutes les surfaces des équipements, tuyauteries et instruments (qui sont en contact avec le gaz) doivent être constituées de matériaux qui restent stables au contact de l'UF₆.

Note explicative

Les articles énumérés dans la présente section soit sont en contact direct avec l'UF₆ gazeux, soit contrôlent directement le flux de gaz dans la cascade. Toutes les surfaces qui sont en contact avec le gaz de procédé sont constituées entièrement ou revêtues de matériaux résistant à l'UF₆. Aux fins ue la section relative aux articles pour enrichissement par procédé aérodynamique, les matériaux résistant à la corrosion par l'UF₆ comprennent le cuivre, l'acier inoxydable, l'aluminium, les alliages d'aluminium, le nickel et les alliages contenant 60 % ou plus de nickel, et les polymères d'hydrocarbures totalement fluorés résistant à l'UF₆.

5.5.1. Tuyères de séparation

Tuyères de séparation et assemblages de tuyères de séparation spécialement conçus ou préparés. Les tuyères de séparation sont constituées de canaux incurvés à section à fente, de rayon de courbure inférieur à 1 mm (habituellement compris entre 0,1 et 0,05 mm), résistant à la corrosion par l'UF₆, à l'intérieur desquels un écorceur sépare en deux fractions le gaz circulant dans la tuyère.

5.5.2. Tubes vortex

Tubes vortex et assemblages de tubes vortex, spécialement conçus ou préparés. Les tubes vortex, de forme cylindrique ou conique, sont constitués ou revêtus de matériaux résistant à la corrosion par l' UF_6 , ont un diamètre compris entre 0,5 cm et 4 cm et un

rapport longucur/diamètre inférieur ou égal à 20:1, et sont munis d'un ou plusieurs canaux d'admission tangentiels. Les tubes peuvent être équipés de dispositifs de type tuyère à l'une de leurs extrémités ou à leurs deux extrémités.

Note explicative

Le gaz pénètre tangentiellement dans le tube vortex à l'une de ses extrémités, ou par l'intermédiaire de cyclones, ou encore tangentiellement par de nombreux orifices situés le long de la périphérie du tube.

5.5.3. Compresseurs et soufflantes à gaz

Compresseurs axiaux, centrifuges ou volumétriques ou soufflantes à gaz spécialement conçus ou préparés, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆ et ayant une capacité d'aspiration du mélange d'UF₆ et de gaz porteur (hydrogène ou hélium) de 2 m³/min ou plus.

Note explicative

Ces compresseurs et ces soufflantes à gaz ont généralement un rapport de compression compris entre 1,2/1 et 6/1.

5.5.4. Garnitures d'étanchéité d'arbres

Garnitures spécialement conçues ou préparées, avec connexions d'alimentation et d'échappement, pour assurer de manière fiable l'étanchéité de l'arbre reliant le rotor du compresseur ou de la soufflante à gaz au moteur d'entraînement en empêchant le gaz de procédé de s'échapper, ou l'air ou le gaz d'étanchéité de pénétrer dans la chambre intérieure du compresseur ou de la soufflante à gaz qui est remplie du mélange d'UF₆ et de gaz porteur.

5.5.5. Echangeurs de chaleur pour le refroidissement du mélange de gaz

Echangeurs de cialeur spécialement conçus ou préparés, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆.

5.5.6. Enceintes renfermant les éléments de séparation

Enceintes spécialement conçues ou préparées, constituées ou revêtues de matériaux résistant à la corrosion par l'UF₆, destinées à recevoir les tubes vortex ou les tuyères de séparation.

Note explicative

Ces enceintes peuvent être des conteneurs de forme cylindrique ayant plus de 300 mm de diamètre et plus de 900 mm de long, ou de forme rectangulaire avec des dimensions comparables, et elles peuvent être conçues pour être installées horizontalement ou verticalement.

5.5.7. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus

Systèmes ou équipements spécialement conçus ou préparés pour les usines d'enrichissement, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆ et comprenant :

- a) Des autoclaves, fours et systèmes d'alimentation utilisés pour introduire l'UF₆ dans le processus d'enrichissement;
- b) Des pièges à froid utilisés pour prélever l'UF₆ du processus d'enrichissement en vue de son transfert ultérieur après réchauffement;
- c) Des stations de solidification ou de liquéfaction utilisées pour prélever l'UF₆ du processus d'enrichissement, par compression et passage à l'état liquide ou solide;
- d) Des stations "Produit" ou "Résidus" pour le transfert de l'UF₆ dans des conteneurs.

5.5.8. Collecteurs/tuyauteries

Tuyauteries et collecteurs constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆, spécialement conçus ou préparés pour la manipulation de l'UF₆ à l'intérieur des cascades aérodynamiques. La tuyauterie est normalement du type collecteur "double", chaque étage ou groupe d'étages étant connecté à chacun des collecteurs.

5.5.9. Systèmes et pompes à vide

- a) Systèmes à vide spécialement conçus ou préparés, ayant une capacité d'aspiration supérieure ou égale à 5 m³/min, comprenant des distributeurs à vide, des collecteurs à vide et des pompes à vide et conçus pour fonctionner en atmosphère d'UF₆.
- Pompes à vide spécialement conçues ou préparées pour fonctionner en atmosphère d'UF₆, et constituées ou revêtues de matériaux résistant à la corrosion par l'UF₆.
 Ces pompes peuvent être dotées de joints en fluorocarbures et pourvues de fluides de service spéciaux.

5.5.10. Vannes spéciales d'arrêt et de réglage

Soufflets d'arrêt et de réglage, manuels ou automatiques, constitués ou revêtus de matériaux résistant à la corrosion par l'UF₆ et ayant un diamètre compris entre 40 et 1 500 mm, spécialement conçus ou préparés pour installation dans des systèmes principaux ou auxiliaires d'usines d'enrichissement par procédé aérodynamique.

5.5.11. Spectromètres de masse pour UF,/sources d'ions

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF₆ gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1. Pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320
- 2. Sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées
- 3. Sources d'ionisation par bombardement électronique
- 4. Collecteur adapté à l'analyse isotopique.

5.5.12. Systèmes de séparation de l'UF₆ et du gaz porteur

Systèmes spécialement conçus ou préparés pour séparer l'UF₆ du gaz porteur (hydrogène ou hélium).

Note explicative

Ces systèmes sont conçus pour réduire la teneur en UF₆ du gaz porteur à 1 ppm ou moins et peuvent comprendre les équipements suivants :

- a) Echangeurs de chaleur cryogéniques et cryoséparateurs capables d'atteindre des températures inférieures ou égales à -120 °C;
- Appareils de réfrigération cryogéniques capables d'atteindre des températures inférieures ou égales à -120 °C;
- c) Tuyères de séparation ou tubes vortex pour séparer l'UF₆ du gaz porteur;
- d) Pièges à froid pour l'UF, capables d'atteindre des températures inférieures ou égales à -20 °C.

5.6. Systèmes, matériel et composants spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par échange chimique ou par échange d'ions

Note d'introduction

Les différences de masse minimes que présentent les isotopes de l'uranium entraînent de légères différences dans l'équilibre des réactions chimiques, phénomène qui peut être utilisé pour séparer les isotopes. Deux procédés ont été mis au point avec de bons résultats : l'échange chimique liquide-liquide et l'échange d'ions solide-liquide.

Dans le procédé d'échange chimique liquide-liquide, deux phases liquides non miscibles (aqueuse et organique) sont mises en contact par circulation à contre-courant de façon à obtenir un effet de cascade correspondant à plusieurs milliers d'étages de séparation. La phase aqueuse est composée de chlorure d'uranium en solution dans de l'acide chlorhydrique; la phase organique est constituée d'un agent d'extraction contenant du chlorure d'uranium dans un solvant organique. Les contacteurs employés dans la cascade de séparation peuvent être des colonnes d'échange liquide-liquide (telles que des colonnes pulsées à plateaux perforés) ou des contacteurs centrifuges liquide-liquide. Des phénomènes chimiques (oxydation et réduction) sont nécessaires à chacune des deux extrémités de la cascade de séparation afin d'y permettre le reflux. L'un des principaux soucis du concepteur est d'éviter la contamination des flux du procédé par certains ions métalliques. On utilise par conséquent des colonnes et des tuyauteries en plastique, revêtues intérieurement de plastique (y compris des fluorocarbures polymères) et/ou revêtues intérieurement de verre.

Dans le procédé d'échange d'ions solide-liquide, l'enrichissement est réalisé par adsorption/désorption de l'uranium sur une résine échangeuse d'ions ou un adsorbant spécial à action très rapide. La solution d'uranium dans l'acide chlorhydrique et d'autres agents chimiques est acheminée à travers des colonnes d'enrichissement cylindriques contenant un garnissage constitué de l'adsorbant. Pour que le processus se déroule de manière continue, il faut qu'un système de reflux libère l'uranium de l'adsorbant pour le remettre en circulation dans la phase liquide, de façon à ce que le produit et les residus puissent être

collectés. Cette opération est effectuée au moyen d'agents chimiques d'oxydo-réduction appropriés, qui sont totalement régénérés dans des circuits externes indépendants et peuvent être partiellement régénérés dans les colonnes de séparation proprement dites. En raison de la présence de solutions dans de l'acide chlorhydrique concentré chaud, les équipements doivent être constitués ou revêtus de matériaux spéciaux résistant à la corrosion.

5.6.1. Colonnes d'échange liquide-liquide (échange chimique)

Colonnes d'échange liquide-liquide à contre-courant avec apport d'énergie mécanique (à savoir colonnes pulsées à plateaux perforés, colonnes à plateaux animés d'un mouvement alternatif et colonnes munies de turbo-agitateurs internes), spécialement conçues ou préparées pour l'enrichissement de l'uranium par le procédé d'échange chimique. Afin de les rendre résistantes à la corrosion par les solutions dans de l'acide chlorhydrique concentré, les colonnes et leurs internes sont constitués ou revêtus de matériaux plastiques appropriés (fluorocarbures polymères, par exemple) ou de verre. Les colonnes sont conçues de telle manière que le temps de séjour correspondant à un étage soit court (30 secondes au plus).

5.6.2. Contacteurs centrifuges liquide-liquide (échange chimique)

Contacteurs centrifuges liquide-liquide spécialement conçus ou préparés pour l'enrichissement de l'uranium par le procédé d'échange chimique. Dans ces contacteurs, la dispersion des flux organique et aqueux est obtenue par rotation, puis la séparation des phases par application d'une force centrifuge. Afin de les rendre résistants à la corrosion par les solutions dans de l'acide chlorhydrique concentré, les contacteurs sont constitués ou revêtus de matériaux plastiques appropriés (fluorocarbures polymères, par exemple) ou revêtus de verre. Les contacteurs centrifuges sont conçus de telle manière que le temps de séjour correspondant à un étage soit court (30 secondes au plus).

5.6.3. Systèmes et équipements de réduction de l'uranium (échange chimique)

a) Cellules de réduction électrochimique spécialement conçues ou préparées pour ramener l'uranium d'un état de valence à un état inférieur en vue de son enrichissement par le procédé d'échange chimique. Les matériaux de la cellule en contact avec les solutions du procédé doivent être résistants à la corrosion par les solutions dans de l'acide chlorhydrique concentré.

Note explicative

Le compartiment cathodique de la cellule doit être conçu de manière à empêcher que l'uranium ne repasse à la valence supérieure par réoxydation. Afin de maintenir l'uranium dans le compartiment cathodique, la cellule peut être pourvue d'une membrane inattaquable constituée d'un matériau spécial échangeur de cations. La cathode est constituée d'un matériau conducteur solide approprié tel que le graphite.

b) Systèmes situés à l'extrémité de la cascade où est récupéré le produit, spécialement conçus ou préparés pour prélever U⁴⁺ sur le flux organique, ajuster la concentration en acide et alimenter les cellules de réduction électrochimique.

Note explicative

Ces systèmes comprennent les équipements d'extraction par solvant permettant de prélever U⁴⁺ sur le flux organique pour l'introduire dans la solution aqueuse, les équipements d'évaporation et/ou autres équipements permettant d'ajuster et de contrôler le pH de la solution, ainsi que les pompes ou autres dispositifs de transfert destinés à alimenter les cellules de réduction électrochimique. L'un des principaux soucis du concepteur est d'éviter la contamination du flux aqueux par certains ions métalliques. Par conséquent, les parties du système qui sont en contact avec le flux du procédé sont composées d'éléments constitués ou revêtus de matériaux appropriés (tels que le verre, les fluorocarbures polymères, le sulfate de polyphényle, le polyéther sulfone et le graphite imprégné de résine).

5.6.4. Systèmes de préparation de l'alimentation (échange chimique)

Systèmes spécialement conçus ou préparés pour produire des solutions de chlorure d'uranium de grande pureté destinées à alimenter les usines de séparation des isotopes de l'uranium par échange chimique.

Note explicative

Ces systèmes comprennent les équipements de purification par dissolution, extraction par solvant et/ou échange d'ions, ainsi que les cellules électrolytiques pour réduire l'uranium U⁶⁺ ou U⁴⁺ en U³⁺. Ils produisent des solutions de chlorure d'uranium ne contenant que quelques parties par million d'impuretés métalliques telles que chrome, fer, vanadium, molybdène et autres cations de valence égale ou supérieure à 2. Les matériaux dont sont constituées ou revêtues les parties du système où est traité de l'uranium U³⁺ de grande pureté comprennent le verre, les fluorocarbures polymères, le sulfate de polyphényle ou le polyéther sulfone et le graphite imprégné de résine.

5.6.5. Systèmes d'oxydation de l'uranium (échange chimique)

Systèmes spécialement conçus ou préparés pour oxyder U³⁺ en U⁴⁺ en vue du reflux vers la cascade de séparation des isotopes dans le procédé d'enrichissement par échange chimique.

Note explicative

Ces systèmes peuvent comprendre des appareils des types suivants :

- a) Appareils destinés à mettre en contact le chlore et l'oxygène avec l'effluent aqueux provenant de la section de séparation des isotopes et à prélever U⁴⁺ qui en résulte pour l'introduire dans l'effluent organique appauvri provenant de l'extrémité de la cascade où est prélevé le produit;
- b) Appareils qui séparent l'eau de l'acide chlorhydrique de façon à ce que l'eau et l'acide chlorhydrique concentré puissent être réintroduits dans le processus aux emplacements appropriés.

5.6.6. Résines échangeuses d'ions/adsorbants à réaction rapide (échange d'ions)

Résines échangeuses d'ions ou adsorbants à réaction rapide spécialement conçus ou préparés pour l'enrichissement de l'uranium par le procédé d'échange d'ions, en particulier résines poreuses macroréticulées et/ou structures pelliculaires dans lesquelles les groupes actifs d'échange chimique sont limités à un revêtement superficiel sur un support poreux inactif, et autres structures composites sous une forme appropriée, et notamment sous forme de particules ou de fibres. Ces articles ont un diamètre inférieur ou égal à 0,2 mm; du point de vue chimique, ils doivent être résistant aux solutions

dans de l'acide chlorhydrique concentré et, du point de vue physique, être suffisamment solides pour ne pas se dégrader dans les colonnes d'échange. Ils sont spécialement conçus pour obtenir de très grandes vitesses d'échange des isotopes de l'uranium (temps de demi-réaction inférieur à 10 secondes) et sont efficaces à des températures comprises entre 100 °C et 200 °C.

5.6.7. Colonnes d'échange d'ions (échange d'ions)

Colonnes cylindriques de plus de 1 000 mm de diamètre contenant un garnissage de résine échangeuse d'ions/d'absorbant, spécialement conçues ou préparées pour l'enrichissement de l'uranium par le procédé d'échange d'ions. Ces colonnes sont constituées ou revêtues de matériaux (tels que le titane ou les plastiques à base de fluorocarbures) résistant à la corrosion par des solutions dans de l'acide chlorhydrique concentré, et peuvent fonctionner à des températures comprises entre 100 °C et 200 °C et à des pressions supérieures à 0,7 MPa (102 psia).

5.6.8. Systèmes de reflux (échange d'ions)

- a) Systèmes de réduction chimique ou électrochimique spécialement conçus ou préparés pour régénérer l'agent (les agents) de réduction chimique utilisé(s) dans les cascades d'enrichissement de l'uranium par le procédé d'échange d'ions.
- b) Systèmes d'oxydation chimique ou électrochimique spécialement conçus ou préparés pour régénérer l'agent (les agents) d'oxydation chimique utilisé(s) dans les cascades d'enrichissement de l'uranium par le procédé d'échange d'ions.

Note explicative

Dans le procédé d'enrichissement par échange d'ions, on peut par exemple utiliser comme cation réducteur le titane trivalent (Ti³⁺): le système de réduction régénérerait alors Ti³⁺ par réduction de Ti⁴⁺.

De même, on peut par exemple utiliser comme oxydant le fer trivalent (Fe³⁺) : le système d'oxydation régénérerait alors Fe³⁺ par oxydation de Fe²⁺.

5.7. Systèmes, matériel et composants spécialement conçus et préparés pour utilisation dans les usines d'enrichissement par laser

Note d'introduction

Les systèmes actuellement employés dans les procédés d'enrichissement par laser peuvent être classés en deux catégories, selon le milieu auquel est appliqué le procédé : vapeur atomique d'uranium ou vapeur d'un composé de l'uranium. Ces procédés sont notamment connus sous les dénominations courantes suivantes : première catégorie - séparation des isotopes par laser sur vapeur atomique (SILVA ou AVLIS); seconde catégorie - séparation des isotopes par irradiation au laser de molécules (SILMO ou MLIS) et réaction chimique par activation laser isotopiquement sélective (CRISLA). Les systèmes, le matériel et les composants utilisés dans les usines d'enrichissement par laser comprennent : a) des dispositifs d'alimentation en vapeur d'uranium métal (en vue d'une photo-ionisation sélective) ou des dispositifs d'alimentation en vapeur d'un composé de l'uranium (en vue d'une photodissociation ou d'une activation chimique); b) des dispositifs pour recueillir l'uranium métal enrichi (produit) et appauvri (résidus) dans les procédés de la première catégorie et des dispositifs pour recueillir les composés dissociés ou activés (produit) et les matières non modifiées (résidus) dans les procédés de la seconde

catégorie; c) des systèmes laser de procédé pour exciter sélectivement la forme uranium 235; d) des équipements pour la préparation de l'alimentation et pour la conversion du produit. En raison de la complexité de la spectroscopie des atomes d'uranium et des composés de l'uranium, il peut falloir englober les articles utilisés dans tous ceux des procédés laser qui sont disponibles.

Note explicative

Un grand nombre des articles énumérés dans la présente section sont en contact direct soit avec l'uranium métal vaporisé ou liquide, soit avec un gaz de procédé consistant en UF₆ ou en un mélange d'UF₆ et d'autres gaz. Toutes les surfaces qui sont en contact avec l'uranium ou l'UF₆ sont constituées entièrement ou revêtues de matériaux résistant à la corrosion. Aux fins de la section relative aux articles pour enrichissement par laser, les matériaux résistant à la corrosion par l'uranium métal ou les alliages d'uranium vaporisés ou liquides sont le graphite revêtu d'oxyde d'yttrium et le tantale; les matériaux résistant à la corrosion par l'UF₆ sont le cuivre, l'acier inoxydable, !'aluminium, les alliages d'aluminium, le nickel, les alliages contenant 60 % ou plus de nickel et les polymères d'hydrocarbures totalement fluorés résistant à l'UF₆.

5.7.1. Systèmes de vaporisation de l'uranium (SILVA)

Systèmes de vaporisation de l'uranium spécialement conçus ou préparés, renfermant des canons à électrons de grande puissance à faisceau en nappe ou à balayage, fournissant une puissance au niveau de la cible supérieure à 2,5 kW/cm.

5.7.2. Systèmes de manipulation de l'uranium métal liquide (SILVA)

Systèmes de manipulation de métaux liquides spécialement conçus ou préparés pour l'uranium ou les alliages d'uranium fondus, comprenant des creusets et des équipements de refroidissement pour les creusets.

Note explicative

Les creusets et autres parties de ces systèmes qui sont en contact avec l'uranium ou les alliages d'uranium fondus sont constitués ou revêtus de matériaux ayant une résistance appropriée à la corrosion et à la chaleur. Les matériaux appropriés comprennent le tantale, le graphite revêtu d'oxyde d'yttrium, le graphite revêtu d'autres oxydes de terres rares ou des mélanges de ces substances.

5.7.3. Assemblages collecteurs du produit et des résidus d'uranium métal (SILVA)

Assemblages collecteurs du produit et des résidus spécialement conçus ou préparés pour l'uranium métal à l'état liquide ou solide.

Note explicative

Les composants de ces assemblages sont constitués ou revêtus de matériaux résistant à la chaleur et à la corrosion par l'uranium métal vaporisé ou liquide (tels que le graphite recouvert d'oxyde d'yttrium ou le tantale) et peuvent comprendre des tuyaux, des vannes, des raccords, des "gouttières", des traversants, des échangeurs de chaleur et des plaques collectrices utilisées dans les méthodes de séparation magnétique, électrostatique ou autres.

5.7.4. Enceintes de module séparateur (SILVA)

Conteneurs de forme cylindrique ou rectangulaire spécialement conçus ou préparés pour loger la source de vapeur d'uranium méta¹, le canon à électrons et les collecteurs du produit et de résidus.

Note explicative

Ces enceintes sont pourvues d'un grand nombre d'orifices pour les barreaux électriques et les traversants destinés à l'alimentation en eau, les fenêtres des faisceaux laser, les raccordements de pompes à vide et les appareils de diagnostic et de surveillance. Elles sont dotées de moyens d'ouverture et de fermeture qui permettent la remise en état des internes.

5.7.5. Tuyères de détente supersonique (SILMO)

Tuyères de détente supersonique, résistant à la corrosion par l'UF₆, spécialement conçues ou préparées pour refroidir les mélanges d'UF₆ et de gaz porteur jusqu'à 150 K ou moins.

5.7.6 Collecteurs du produit (pentafluorure d'uranium) (SILMO)

Collecteurs de pentafluorure d'uranium (UF₅) solide spécialement conçus ou préparés, constitués de collecteurs ou de combinaisons de collecteurs à filtre, à impact ou à cyclone et résistant à la corrosion en milieu UF₅/UF₆.

5.7.7. Compresseurs d'UF,/gaz porteur (SILMO)

Compresseurs spécialement conçus ou préparés pour les mélanges d' UF_6 et de gaz porteur, prévus pour un fonctionnement de longue durée en atmosphère d' UF_6 . Les composants de ces compresseurs qui sont en contact avec le gaz de procédé sont constitués ou revêtus de matériaux résistant à la corrosion par l' UF_6 .

5.7.8. Garnitures d'étanchéité d'arbres (SILMO)

Garnitures spécialement conçues ou préparées, avec connexions d'alimentation et d'échappement, pour assurer de manière fiable l'étanchéité de l'arbre reliant le rotor du compresseur au moteur d'entraînement en empêchant le gaz de procédé de s'échapper, ou l'air ou le gaz d'étanchéité de pénétrer dans la chambre intérieure du compresseur qui est rempli du mélange UF₆/gaz porteur.

5.7.9. Systèmes de fluoration (SILMO)

Systèmes spécialement conçus ou préparés pour fluorer l'UF₅ (solide) en UF₆ (gazeux).

Note explicative

Ces systèmes sont conçus pour fluorer la poudre d'UF₅, puis recueillir l'UF₆, dans les conteneurs destinés au produit, ou le réintroduire dans les unités SILMO en vue d'un enrichissement plus poussé. Dans l'une des méthodes possibles, la fluoration peut être réalisée à l'intérieur du système de séparation des isotopes,

la réaction et la récupération se faisant directement au niveau des collecteurs du produit. Dans une autre méthode, la poudre d'UF₅ peut être retirée des collecteurs du produit et transférée dans une enceinte appropriée (par exemple réacteur à lit fluidisé, réacteur hélicoïdal ou tour à flamme) pour y subir la fluoration. Dans les deux méthodes, on emploie un certain matériel pour le stockage et le transfert du fluor (ou d'autres agents de fluoration appropriés) et pour la collecte et le transfert de l'UF₆.

5.7.10. Spectromètres de masse pour UF,/sources d'ions (SILMO)

Spectromètres de masse magnétiques ou quadripolaires spécialement conçus ou préparés, capables de prélever en direct sur les flux d'UF₆ gazeux des échantillons du gaz d'entrée, du produit ou des résidus, et ayant toutes les caractéristiques suivantes :

- 1. Pouvoir de résolution unitaire pour l'unité de masse atomique supérieur à 320
- 2. Sources d'ions constituées ou revêtues de nichrome ou de monel ou nickelées
- 3. Sources d'ionisation par bombardement électronique
- 4. Collecteur adapté à l'analyse isotopique.

5.7.11. Systèmes d'alimentation/systèmes de prélèvement du produit et des résidus (SILMO)

Systèmes ou équipements spécialement conçus ou préparés pour les usines d'enrichissement, constitués ou revêtus de matériaux résistant à la corresion par l'UF₆ et comprenant :

- a) Des autoclaves, fours et systèmes d'alimentation utilisés pour introduire l'UF₆ dans le processus d'enrichissement;
- b) Des pièges à froid utilisés pour retirer l'UF₆ du processus d'enrichissement en vue de son transfert ultérieur après réchauffement;
- c) Des stations de solidification ou de liquéfaction utilisées pour retirer l'UF₆ du processus d'enrichissement par compression et passage à l'état liquide ou solide;
- d) Des stations "Produit" ou "Résidus" pour le transfert de l'UF₆ dans des conteneurs.

5.7.12. Systèmes de séparation de l'UF, et du gaz porteur (SILMO)

Systèmes spécialement conçus ou préparés pour séparer l'UF₆ du gaz porteur. Ce dernier peut être l'azote, l'argon ou un autre gaz.

Note explicative

Ces systèmes peuvent comprendre les équipements suivants :

- a) Echangeurs de chaleur cryogéniques et cryoséparateurs capables d'atteindre des températures inférieures ou égales à -120 °C;
- Appareils de réfrigération cryogéniques capables d'atteindre des températures inférieures ou égales à -120 °C;
- c) Pièges à froid pour l'UF₆ capables d'atteindre des températures inférieures ou égales à -20 °C.

5.7.13. Systèmes laser (SILVA, SILMO et CRISLA)

Lasers ou systèmes laser spécialement conçus ou préparés pour la séparation des isotopes de l'uranium.

Note explicative

Le système laser utilisé dans le procédé SILVA comprend généralement deux lasers : un laser à vapeur de cuivre et un laser à colorant. Le système laser employé dans le procédé SILMO comprend généralement un laser à CO_2 ou un laser à excimère et une cellule optique à multipassages munie de miroirs tournants aux deux extrémités. Dans les deux procédés, les lasers ou les systèmes laser doivent être munis d'un stabilisateur de fréquence pour pouvoir fonctionner pendant de longues périodes.

Les lasers et les composants de laser importants (amplificateurs et oscillateurs) dans les procédés d'enrichissement par laser sont les suivants :

- a) Lasers à vapeur de cuivre possédant une puissance de sortie moyenne égale ou supérieure à 40 W, fonctionnant à des longueurs d'ondes comprises entre 500 nm et 600 nm;
- Lasers à ions argon possédant une puissance de sortie moyenne supérieure à 40 W, fonctionnant à des longueurs d'onde comprises entre 400 nm et 515 nm;
- c) Lasers dopés au néodyme (autres que les lasers à verre) comme suit :
 - Ayant une longueur d'onde de sortie comprise entre 1 000 nm et 1 100 nm, à excitation par impulsions et à fonctionnement déclenché, avec une durée d'impulsion égale ou supérieure à 1 ns et possédant une des deux caractéristiques suivantes :
 - a) Un fonctionnement monomode transverse avec une puissance moyenne de sortie supérieure à 40 W;
 - b) Un fonctionnement multimode transverse avec une puissance moyenne de sortie supérieure à 50 W;
 - 2) Fonctionnant à une longueur d'onde comprise entre 1 000 nm et 1 100 nm et comportant un doubleur de fréquence produisant une longueur d'onde de sortie comprise entre 500 nm et 550 nm avec une puissance moyenne à la fréquence double (nouvelle longueur d'onde) supérieure à 40 W;
- d) Oscillateurs à colorants accordables monomodes fonctionnant en régime pulsé, ayant une puissance moyenne de sortie supérieure à 1 W, une fréquence de récurrence a'impulsions supérieure à 1 kHz, une durée d'impulsion inférieure à 100 ns et une longueur d'onde comprise entre 300 nm et 800 nm;
- e) Amplificateurs et oscillateurs lasers à colorants accordables fonctionnant en régime pulsé, à l'exception des oscillateurs monomodes, ayant une puissance moyenne de sortie supérieure à 30 W, une fréquence de récurrence d'impulsions supérieure à 1 kHz, une durée d'impulsion inférieure à 100 ns et une longueur d'onde comprise entre 300 n.n et 800 nm;
- f) Lasers à alexandrite ayant une largeur de bande inférieure ou égale à 0,005 nm, une fréquence de récurrence d'impulsions supérieure à 125 Hz et à une puissance moyenne de sortie supérieure à 30 W, fonctionnant sur des longueurs d'onde comprises entre 720 nm et 800 nm;
- g) Lasers à dioxyde de carbone à régime pulsé ayant une fréquence de récurrence d'impulsions supérieure à 250 Hz, une puissance moyenne de sortie supérieure à 500 W et une durée d'impulsion inférieure à 200 ns, fonctionnant à des longueurs d'onde comprises entre 9 000 nm et 11 000 nm;

- N.B. Ces spécifications ne visent pas les lasers industriels à dioxyde de carbone de puissance plus élevée (généralement de 1 à 5 kW) utilisés dans des applications telles que la découpe et le soudage puisque lesdits lasers fonctionnent soit en régime continu soit en régime pulsé avec une durée d'impulsion supérieure à 200 ns.
- Lasers à excimère (XeF, XeCl, KrF) fonctionnant en régime pulsé, ayant une fréquence de récurrence d'impulsions supérieure à 250 Hz, une puissance moyenne de sortie supérieure à 500 W et des longueurs d'onde comprises entre 240 et 360 nm;
- i) Appareils de déplacement Raman à parahydrogène conçus pour fonctionner à une longueur d'onde de sortie de 16 μm et une fréquence de récurrence supérieure à 250 Hz.

5.8. Systèmes, matériel et composants spécialement conçus ou préparés pour utilisation dans les usines d'enrichissement par séparation des isotopes dans un plasma

Note d'introduction

Dans le procédé de séparation dans un plasma, un plasma d'ions d'uranium traverse un champ électrique accordé à la fréquence de résonance des ions ²³⁵U, de sorte que ces derniers absorbent de l'énergie de manière préférentielle et que le diamètre de leurs orbites hélicoïdales s'accroît. Les ions qui suivent un parcours de grand diamètre sont piégés et on obtient un produit enrichi en ²³⁵U. Le plasma, qui est créé en ionisant de la vapeur d'uranium, est contenu dans une enceinte à vide soumise à un champ magnétique de haute intensité produit par un aimant supraconducteur. Les principaux systèmes du procédé comprennent le système générateur du plasma d'uranium, le module séparateur et son aimant supraconducteur et les systèmes de prélèvement de l'uranium métal destinés à collecter le produit et les résidus.

5.8.1. Sources d'énergie hyperfréquence et antennes

Sources d'énergie hyperfréquence et antennes spécialement conçues ou préparées pour produire ou accélérer des ions et ayant les caractéristiques suivantes : fréquence supérieure à 30 GHz et puissance de sortie moyenne supérieure à 50 kW pour la production d'ions.

5.8.2. Bobines excitatrices d'ions

Bobines excitatrices d'ions à haute fréquence spécialement conçues ou préparées pour des fréquences supérieures à 100 kHz et capables de supporter une puissance moyenne supérieure à 40 kW.

5.8.3. Systèmes générateurs de plasma d'uranium

Systèmes de production de plasma d'uranium spécialement conçus ou préparés, pouvant renfermer des canons à électrons de grande puissance à faisceau en nappe ou à balayage, fournissant une puissance au niveau de la cible supérieure à 2,5 kW/cm.

5.8.4. Systèmes de manipulation de l'uranium métal liquide

Systèmes de manipulation de métaux liquides spécialement conçus ou préparés pour l'uranium ou les alliages d'uranium fondus, comprenant des creusets et des équipements de refroidissement pour les creusets.

Note explicative

Les creusets et autres parties de ces systèmes qui sont en contact avec l'uranium ou les alliages d'uranium fondus sont constitués ou revêtus de matériaux ayant une résistance appropriée à la corrosion et à la chaleur. Les matériaux appropriés comprennent le tantale, le graphite revêtu d'oxyde d'yttrium, le graphite revêtu d'autres oxydes de terres rares ou des mélanges de ces substances.

5.8.5. Assemblages collecteurs du produit et des résidus d'uranium métal

Assemblages collecteurs du produit et des résidus spécialement conçus ou préparés pour l'uranium métal à l'état solide. Ces assemblages collecteurs sont constitués ou revêtus de matériaux résistant à la chaleur et à la corrosion par la vapeur d'uranium métal, tels que le graphite revêtu d'oxyde d'yttrium ou le tantale.

5.8.6. Enceintes de module séparateur

Conteneurs cylindriques spécialement conçus ou préparés pour les usines d'enrichissement par séparation des isotopes dans un plasma et destinés à loger la source de plasma d'uranium, la bobine excitatrice à haute fréquence et les collecteurs du produit et des résidus.

Note explicative

Ces enceintes sont pourvues d'un grand nombre d'orifices pour les barreaux électriques, les raccordements de pompes à diffusion et les appareils de diagnostic et de surveillance. Elles sont dotées de moyens d'ouverture et de fermeture qui permettent la remise en état des internes et sont constituées d'un matériau non magnétique approprié tel que l'acier inoxydable.

5.9. Systèmes, matériel et composants spécialement conçus et préparés pour utilisation dans les usines d'enrichissement par le procédé électromagnétique

Note d'introduction

Dans le procédé électromagnétique, les ions d'uranium métal produits par ionisation d'un sel (en général UCl) sont accélérés et envoyés à travers un champ magnétique sous l'effet duquel les ions des différents isotopes empruntent des parcours différents. Les principaux composants d'un séparateur d'isotopes électromagnétique sont les suivants : champ magnétique provoquant la déviation du faisceau d'ions et la séparation des isotopes, source d'ions et son système accélérateur et collecteurs pour recueillir les ions après séparation. Les systèmes auxiliaires utilisés dans le procédé comprennent l'alimentation de l'aimant, l'alimentation haute tension de la source d'ions, l'installation de vide et d'importants systèmes de manipulation chimique pour la récupération du produit et l'épuration ou le recyclage des composants.

5.9.1. Séparateurs électromagnetiques

Séparateurs électromagnétiques spécialement conçus ou préparés pour la séparation des isotopes de l'uranium, et matériel et composants pour cette séparation, à savoir en particulier :

a) Sources d'ions

Sources d'ions uranium uniques ou multiples, spécialement conçues ou préparées, comprenant la source de vapeur, l'ionisateur et l'accélérateur de faisceau, constituées de matériaux appropriés comme le graphite, l'acier inoxydable ou le cuivre, et capables de fournir un courant d'ionisation total égal ou supérieur à 50 mA.

b) Collecteurs d'ions

Plaques collectrices comportant des fentes et des poches (deux ou plus), spécialement conçues ou préparées pour collecter les faisceaux d'ions uranium enrichis et appauvris, et constituées de matériaux appropriés comme le graphite ou l'acier inoxydable.

c) Enceintes à vide

Enceintes à vide spécialement conçues ou préparées pour les séparateurs électromagnétiques, constituées de matériaux non magnétiques appropriés comme l'acier inoxydable et conçues pour fonctionner à des pressions inférieures ou égales à 0,1 Pa.

Note explicative

Les enceintes sont spécialement conçues pour renfermer les sources d'ions, les plaques collectrices et les chemises d'eau et sont dotées des moyens de raccorder les pompes à diffusion et de dispositifs d'ouverture et de fermeture qui permettent de déposer et de reposer ces composants.

d) Pièces polaires

Pièces polaires spécialement conçues ou préparées, de diamètre supérieur à 2 m, utilisées pour maintenir un champ magnétique constant à l'intérieur du séparateur électromagnétique et pour transférer le champ magnétique entre séparateurs contigus.

5.9.2. Alimentations haute tension

Alimentations haute tension spécialement conçues ou préparées pour les sources d'ions et ayant toutes les caractéristiques suivantes : capables de fournir en permanence, pendant une période de 8 heures, une tension de sortie égale ou supérieure à 20 000 V avec une intensité de sortie égale ou supérieure à 1 A et une variation de tension inférieure à 0,01 %.

5.9.3. Alimentations des aimants

Alimentations des aimants en courant continu de haute intensité spécialement conçues ou préparées et ayant toutes les caractéristiques suivantes : capables de produire en permanence, pendant une période de 8 heures, un courant d'intensité supérieure ou égale à 500 A à une tension supérieure ou égale à 100 V, avec des variations d'intensité et de tension inférieures à 0,01 %.