Information (15:00), March 1, 2017 To All Missions (Embassies, Consular posts and International Organizations in Japan) ## Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station during February 2017 The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the discharge record and seawater monitoring results with regard to groundwater pumped from the subdrain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of February 2017 at Fukushima Daiichi Nuclear Power Station (NPS). ### 1. Subdrain and Groundwater Drain Systems In February, purified groundwater pumped from the subdrain and groundwater drain systems was discharged on the dates shown in Appendix 1. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced. All the test results during the month of February have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Mitsubishi Nuclear Fuel Co., Ltd, Kaken Co., Ltd and Tohoku Ryokka Kankyohozen Co.). In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater is substantially below the operational target (see Appendix 2). Moreover, TEPCO publishes the results of analyses conducted on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 3). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. #### 2. Groundwater Bypassing In February, the pumped bypassing groundwater was discharged on the dates shown in Appendix 4. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced. All the test results during the month of February have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center. In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater are substantially below the operational target (see Appendix 5). Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 6). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed. The sampling process for analyses conducted this month is the same as the one announced in the information disseminated last month. Results of the analyses are shown in the attached appendices: (For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website: http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html) Contact: International Nuclear Energy Cooperation Division, Ministry of Foreign Affairs, Tel 03-5501-8227 Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge) | | | | (Unit: Bq/L) | |---|----------------------|-----------------|--------------------------| | Data of gamenting | Dotostod | Analytical body | | | Date of sampling *Date of discharge | Detected
nuclides | TEPCO | Third-party organization | | F. b | Cs-134 | ND (0.57) | ND (0.45) | | February 23 rd , 2017 | Cs-137 | ND (0.75) | ND (0.78) | | *Discharged on
February 28 th | Gross β | ND (2.4) | ND (0.32) | | r ebidary 20 | H-3 | 860 | 900 | | – . | Cs-134 | ND (0.81) | ND (0.88) | | February 22 nd , 2017 | Cs-137 | ND (0.58) | ND (0.74) | | *Discharged on
February 27 th | Gross β | ND (2.4) | ND (0.33) | | rebluary 21 | H-3 | 930 | 980 | | | Cs-134 | ND (0.62) | ND (0.79) | | February 20 th , 2017 | Cs-137 | ND (0.68) | ND (0.60) | | *Discharged on
February 25 th | Gross β | ND (2.1) | ND (0.33) | | rebluary 25 | H-3 | 860 | 920 | | | Cs-134 | ND (0.58) | ND (0.68) | | February 18 th , 2017 | Cs-137 | ND (0.63) | ND (0.75) | | *Discharged on | Gross β | ND (2.4) | ND (0.41) | | February 24 th | H-3 | 790 | 830 | | | Cs-134 | ND (0.65) | ND (0.68) | | February 17 th , 2017 | Cs-137 | ND (0.75) | ND (0.86) | | *Discharged on | Gross β | ND (2.7) | ND (0.35) | | February 23 rd | H-3 | 800 | 840 | | | Cs-134 | ND (0.63) | ND (0.60) | | February 16 th , 2017 | Cs-137 | ND (0.63) | ND (0.78) | | *Discharged on
February 22 nd | Gross β | ND (0.75) | 0.40 | | February 22 | H-3 | 830 | 860 | | | Cs-134 | ND (0.64) | ND (0.84) | | February 14 th , 2017 | Cs-137 | ND (0.63) | ND (0.65) | | *Discharged on | Gross β | ND (2.4) | ND (0.34) | | February 19 th | H-3 | 830 | 870 | | | Cs-134 | ND (0.63) | ND (0.79) | | February 12 th , 2017 | Cs-137 | ND (0.53) | ND (0.74) | | *Discharged on | Gross β | ND (2.4) | ND (0.36) | | February 17 th | H-3 | 920 | 960 | | February 11 th , 2017 *Discharged on February 16 th | Cs-134
Cs-137 | ND (0.68)
ND (0.63) | ND (0.86) | |--|------------------|------------------------|-----------| | *Discharged on | Cs-137 | ND (0.63) | ND (0.60) | | | | , | ND (0.60) | | Tebluary 10 | Gross β | ND (2.4) | ND (0.37) | | | H-3 | 910 | 970 | | - L L L L L L L L L L L L L L L L L L L | Cs-134 | ND (0.68) | ND (0.70) | | February 10 th , 2017 | Cs-137 | ND (0.71) | ND (0.82) | | *Discharged on
February 15 th | Gross β | ND (2.3) | ND (0.35) | | rebluary 15 | H-3 | 880 | 920 | | | Cs-134 | ND (0.68) | ND (0.60) | | February 8 th , 2017 | Cs-137 | ND (0.53) | ND (0.86) | | *Discharged on | Gross β | ND (0.83) | 0.40 | | February 13 th | H-3 | 890 | 950 | | | Cs-134 | ND (0.81) | ND (0.67) | | February 6 th , 2017 | Cs-137 | ND (0.68) | ND (0.74) | | *Discharged on | Gross β | ND (2.5) | 0.44 | | February 11 th | H-3 | 890 | 950 | | | Cs-134 | ND (0.76) | ND (0.76) | | February 5 th , 2017 | Cs-137 | ND (0.53) | ND (0.59) | | *Discharged on | Gross β | ND (2.1) | ND (0.33) | | February 10 th | H-3 | 870 | 890 | | | Cs-134 | ND (0.54) | ND (0.49) | | February 4 th , 2017 | Cs-137 | ND (0.63) | ND (0.50) | | *Discharged on | Gross β | ND (2.7) | ND (0.37) | | February 9 th | H-3 | 820 | 840 | | | Cs-134 | ND (0.52) | ND (0.54) | | February 1 st , 2017 | Cs-137 | ND (0.68) | ND (0.70) | | *Discharged on
February 6 th | Gross β | ND (0.83) | ND (0.34) | | February 6 | H-3 | 850 | 890 | | | Cs-134 | ND (0.40) | ND (0.79) | | January 31 th , 2017 | Cs-137 | ND (0.58) | ND (0.70) | | *Discharged on | Gross β | ND (2.3) | 0.46 | | February 5 th | H-3 | 890 | 930 | | | Cs-134 | ND (0.62) | ND (0.66) | | January 30 th , 2017 | Cs-137 | ND (0.75) | ND (0.96) | | *Discharged on | Gross β | ND (2.4) | ND (0.36) | | February 4 th | H-3 | 870 | 910 | | | Cs-134 | ND (0.68) | ND (0.95) | | January 28 th , 2017 | Cs-137 | ND (0.63) | ND (0.78) | | *Discharged on | Gross β | ND (2.5) | 0.42 | | February 2 nd | H-3 | 920 | 940 | - * * ND: represents a value below the detection limit; values in () represent the detection limit. - * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water. - * Third-party organization: Mitsubishi Nuclear Fuel Co., Ltd, Kaken Co., Ltd and Tohoku Ryokka Kankyohozen Co., Ltd Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses) | | Detected
nuclides | Analytical body | | | |-------------------------------|----------------------|-----------------|-------------|-----------------------------------| | Date of sampling | | JAEA | TEPCO | Japan Chemical
Analysis Center | | January 1 st ,2017 | Cs-134 | ND (0.0033) | ND (0.0048) | ND (0.0063) | | | Cs-137 | 0.0039 | 0.0049 | ND(0.0040) | | | Gross α | ND (0.46) | ND (3.1) | ND (3.5) | | | Gross β | ND (0.45) | ND (0.72) | ND (0.57) | | | H-3 | 570 | 530 | 540 | | | Sr-90 | 0.0037 | ND (0.0013) | ND(0.0050) | ^{*} ND: represents a value below the detection limit; values in () represent the detection limit. Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel) (Unit: Bq/L) | Date of sampling | Detected nuclides | Sampling point (South discharge channel) | |---------------------------------|-------------------|--| | | Cs-134 | ND (0.59) | | February 6 th , 2017 | Cs-137 | ND (0.62) | | *During discharge | Gross β | 14 | | | H-3 | ND(1.6) | ## (Reference) | Radionuclides | Operational Targets | Density Limit
specified by the
Reactor Regulation | World Health
Organization (WHO)
Guidelines for Drinking
Water Quality | |---------------|---------------------|---|--| | Cs-134 | 1 | 60 | 10 | | Cs-137 | 1 | 90 | 10 | | Gross α | _ | _ | _ | | Gross β | 3 (1) * | _ | - | | H-3 | 1,500 | 60,000 | 10,000 | | Sr-90 | _ | 30 | 10 | X The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days. Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge) | | | | (Unit. by) | |---|-------------------|-----------------|-----------------------------------| | Date of sampling | | Analytical body | | | *Date of discharge | Detected nuclides | TEPCO | Japan Chemical
Analysis Center | | - 46 | Cs-134 | ND (0.52) | ND (0.70) | | February 15 th , 2017 | Cs-137 | ND (0.58) | ND (0.59) | | *Discharged on
February 28 th | Gross β | ND (0.72) | ND (0.60) | | rebluary 26 | H-3 | 130 | 130 | | | Cs-134 | ND (0.65) | ND (0.80) | | February 8 th , 2017 | Cs-137 | ND (0.63) | ND (0.53) | | *Discharged on
February 21 th | Gross β | ND (0.75) | ND (0.52) | | | H-3 | 120 | 140 | | | Cs-134 | ND (0.63) | ND (0.80) | | February 1 st , 2017 | Cs-137 | ND (0.58) | ND (0.76) | | *Discharged on
February 14 th | Gross β | ND (0.72) | ND (0.55) | | | H-3 | 140 | 150 | | | Cs-134 | ND (0.52) | ND (0.50) | | January 25 th , 2017 | Cs-137 | ND (0.63) | ND (0.59) | | *Discharged on
February 7 th | Gross β | ND (0.83) | ND (0.50) | | February 7 | H-3 | 140 | 150 | ^{* *} ND: represents a value below the detection limit; values in () represent the detection limit ^{*} In order to ensure the results, Japan Chemical Analysis Center, a third-party organization, has also conducted an analysis and verified the radiation level of the sampled water. Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses) | | Detected nuclides | Analytical body | | | | |--------------------------------|-------------------|-----------------|-------------|-----------------------------------|--| | Date of sampling | | JAEA | TEPCO | Japan Chemical
Analysis Center | | | January 4 th , 2017 | Cs-134 | ND (0.0035) | ND (0.0049) | ND (0.0061) | | | | Cs-137 | ND(0.0024) | ND(0.0039) | ND(0.0047) | | | | Gross α | ND (0.63) | ND (3.1) | ND (3.5) | | | | Gross β | ND (0.45) | ND (0.68) | ND (0.62) | | | | H-3 | 160 | 1150 | 150 | | | | Sr-90 | 0.0038 | ND (0.0015) | ND (0.0064) | | ^{*} ND: represents a value below the detection limit; values in () represent the detection limit. Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel) (Unit: Bq/L) | Date of sampling Detected nuclides | | Sampling point (South discharge channel) | |--|---------|--| | | Cs-134 | ND (0.67) | | January 10 th , 2017 | Cs-137 | ND (0.58) | | *Discharged on
February 2 nd | Gross β | 11 | | rebidaly 2 | H-3 | 1.6 | (Reference) (Unit: Bq/L) | Radionuclides | Operational Targets | Density Limit
specified by the
Reactor Regulation | World Health
Organization
(WHO) Guidelines
for Drinking Water
Quality | |---------------|---------------------|---|---| | Cs-134 | 1 | 60 | 10 | | Cs-137 | 1 | 90 | 10 | | Gross α | _ | _ | _ | | Gross β | 5 (1) * | _ | _ | | H-3 | 1,500 | 60,000 | 10,000 | | Sr-90 | _ | 30 | 10 | $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.