Information (16:00), June 1, 2017

To All Missions (Embassies, Consular posts and International Organizations in Japan)

Report on the discharge record and the seawater monitoring results at Fukushima Daiichi Nuclear Power Station during May 2017

The Ministry of Foreign Affairs wishes to provide all international Missions in Japan with a report on the discharge record and seawater monitoring results with regard to groundwater pumped from the subdrain and groundwater drain systems, as well as, bypassing groundwater pumped during the month of May 2017 at Fukushima Daiichi Nuclear Power Station (NPS).

1. Subdrain and Groundwater Drain Systems

In May, purified groundwater pumped from the subdrain and groundwater drain systems was discharged on the dates shown in Appendix 1. Prior to every discharge, an analysis on the quality of the purified groundwater to be discharged was conducted by Tokyo Electric Power Company (TEPCO) and the results were announced.

All the test results during the month of May have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by third-party organization (Mitsubishi Nuclear Fuel Co., Ltd, Kaken Co., Ltd and Tohoku Ryokka Kankyohozen Co.).

In addition, TEPCO and Japan Atomic Energy Agency (JAEA), at the request of the Government of Japan, regularly conduct more detailed analyses on the purified groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of sampled groundwater is substantially below the operational target (see Appendix 2).

Moreover, TEPCO publishes the results of analyses conducted on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 3). The results show that the radiation levels of seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

2. Groundwater Bypassing

In May, the pumped bypassing groundwater was discharged on the dates shown in Appendix 4. Prior to every discharge, an analysis on the quality of the groundwater to be discharged was conducted by TEPCO and the results were announced.

All the test results during the month of May have confirmed that the radiation levels of sampled water were substantially below the operational targets set by TEPCO (these operational targets are well below the density limit specified by the Reactor Regulation). The results of these analyses were also confirmed by Japan Chemical Analysis Center.

In addition, TEPCO and JAEA, at the request of the Government of Japan, regularly conduct more detailed analyses on the groundwater. The results of JAEA's latest analyses confirmed that TEPCO's analyses were accurate and verified that the radiation levels of the sampled groundwater are substantially below the operational target (see Appendix 5).

Moreover, TEPCO publishes analysis results on seawater sampled during the discharge operation at the nearest seawater sampling post from the discharge point (see Appendix 6). The result shows that the radiation levels in seawater remain lower than the density limit specified by the Reactor Regulation and significant change in the radioactivity has not been observed.

The sampling process for analyses conducted this month is the same as the one announced in the information disseminated last month. Results of the analyses are shown in the attached appendices:

(For further information, please contact TEPCO at (Tel: 03-6373-1111) or refer to the TEPCO's website:

http://www.tepco.co.jp/en/nu/fukushima-np/handouts/index-e.html)

Contact: International Nuclear Energy Cooperation Division, Ministry of Foreign Affairs, Tel 03-5501-8227 Results of analyses on the quality of the purified groundwater pumped from the subdrain and groundwater drain systems at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

		<u> </u>	(Unit: Bq/L)
Data of compling	Detected	Analytical body	
Date of sampling *Date of discharge	Detected nuclides	TEPCO	Third-party organization
NA orth cour	Cs-134	ND (0.66)	ND (0.82)
May 25 th , 2017	Cs-137	ND (0.58)	ND (0.68)
*Discharged on May 30 th	Gross β	ND (0.72)	ND(0.33)
Way 50	H-3	890	890
• th	Cs-134	ND (0.46)	ND (0.75)
May 24 th , 2017	Cs-137	ND (0.53)	ND (0.50)
*Discharged on May 29 th	Gross β	ND (2.3)	ND(0.32)
iviay 29	H-3	890	910
	Cs-134	ND (0.52)	ND (0.75)
May 23 rd , 2017	Cs-137	ND (0.63)	ND (0.68)
*Discharged on May 28 th	Gross β	ND (2.5)	ND(0.35)
ividy 20	H-3	880	930
	Cs-134	ND (0.74)	ND (0.77)
May 21 st , 2017	Cs-137	ND (0.53)	ND (0.64)
*Discharged on May 26 th	Gross β	ND (2.4)	ND(0.32)
iviay 26	H-3	790	850
415	Cs-134	ND (0.58)	ND (0.89)
May 20 th , 2017	Cs-137	ND (0.58)	ND (0.64)
*Discharged on May 25 th	Gross β	ND (2.3)	ND(0.31)
iviay 23	H-3	810	870
4h	Cs-134	ND (0.58)	ND (0.89)
May 19 th , 2017	Cs-137	ND (0.58)	ND (0.77)
*Discharged on May 24 th	Gross β	ND (2.4)	ND (0.33)
IVIAY 24	H-3	800	860
	Cs-134	ND (0.54)	ND (0.75)
May 17 th , 2017	Cs-137	ND (0.71)	ND (0.60)
*Discharged on May 22 nd	Gross β	ND (2.3)	ND (0.33)
IVIAY ZZ	H-3	750	800
- 4h	Cs-134	ND (0.72)	ND (0.77)
May 16 th , 2017	Cs-137	ND (0.63)	ND (0.50)
*Discharged on May 21 st	Gross β	ND (0.68)	0.49
iviay ∠ i	H-3	810	870

	Cs-134	ND (0.81)	ND (0.77)
May 14 th , 2017	Cs-137	ND (0.53)	ND (0.50)
*Discharged on May 19 th	Gross β	ND (2.4)	0.41
May 19	H-3	900	950
	Cs-134	ND (0.60)	ND (0.77)
May 13 th , 2017	Cs-137	ND (0.71)	ND (0.55)
*Discharged on	Gross β	ND (2.7)	0.41
May 18 th	H-3	1000	970
46	Cs-134	ND (0.56)	ND (0.72)
May 12 th , 2017	Cs-137	ND (0.63)	ND (0.50)
*Discharged on May 17 th	Gross β	ND (2.4)	ND (0.40)
мау 17	H-3	870	940
41	Cs-134	ND (0.76)	ND (0.50)
May 10 th , 2017	Cs-137	ND (0.58)	ND (0.71)
*Discharged on May 15 th	Gross β	ND (2.1)	0.38
iviay 15	H-3	890	940
	Cs-134	ND (0.68)	ND (0.75)
May 8 th , 2017	Cs-137	ND (0.63)	ND (0.85)
*Discharged on May 13 th	Gross β	ND (0.75)	0.42
May 13	H-3	860	900
	Cs-134	ND (0.47)	ND (0.75)
May 7 th , 2017	Cs-137	ND (0.53)	ND (0.68)
*Discharged on	Gross β	ND (2.4)	0.47
May 12 th	H-3	900	950
	Cs-134	ND (0.66)	ND (0.75)
May 5 th , 2017	Cs-137	ND (0.63)	ND (0.80)
*Discharged on	Gross β	ND (2.3)	0.43
May 10 th	H-3	870	910
	Cs-134	ND (0.58)	ND (0.80)
May 4 th , 2017	Cs-137	ND (0.68)	ND (0.60)
*Discharged on	Gross β	ND (2.4)	ND (0.34)
May 9 th	H-3	890	960
	Cs-134	ND (0.49)	ND (0.83)
May 2 nd , 2017	Cs-137	ND (0.71)	ND (0.60)
*Discharged on	Gross β	ND (2.1)	0.44
May 7 th	H-3	870	940
	Cs-134	ND (0.68)	ND (0.67)
May 1 st , 2017	Cs-137	ND (0.53)	ND (0.80)
*Discharged on	Gross β	ND (0.68)	0.46
May 6 th	H-3	910	960
April 29 th , 2017	Cs-134	ND (0.49)	ND (0.63)
•	Cs-137	ND (0.53)	ND (0.68)
*Discharged on May 4 th	Gross β	ND (2.7)	ND (0.26)

	H-3	830	860
April 28 th , 2017	Cs-134	ND (0.62)	ND (0.65)
	Cs-137	ND (0.58)	ND (0.68)
*Discharged on May 3 rd	Gross β	ND (0.64)	ND(0.32)
	H-3	960	950

- * * ND: represents a value below the detection limit; values in () represent the detection limit.
- * In order to ensure the results, third-party organizations have also conducted an analysis and verified the radiation level of the sampled water.
- * Third-party organization: Mitsubishi Nuclear Fuel Co., Ltd, Kaken Co., Ltd and Tohoku Ryokka Kankyohozen Co., Ltd

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

	Detected	Analytical body			
Date of sampling	Date of sampling Detected nuclides		TEPCO	Japan Chemical Analysis Center	
April 1 st ,2017	Cs-134	0.0047	ND (0.0042)	ND (0.0065)	
	Cs-137	0.033	0.029	0.043	
	Gross α	ND (0.59)	ND (3.8)	ND (3.7)	
	Gross β	ND (0.45)	ND (0.79)	ND (0.61)	
	H-3	870	800	840	
	Sr-90	0.0022	ND (0.0016)	ND(0.0067)	

^{*} ND: represents a value below the detection limit; values in () represent the detection limit.

Results of analysis on the seawater sampled near the discharge point (North side of Units 5 and 6 discharge channel)

(Unit: Bq/L)

Date of sampling	Detected nuclides	Sampling point (South discharge channel)
April 6 th , 2017	Cs-134	ND (0.60)
*0	Cs-137	ND (0.71)
*Sampled before discharge of purified	Gross β	12
groundwater.	H-3	ND(1.9)

(Reference)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	3 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

 $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.

Results of analyses on the water quality of the groundwater pumped up for bypassing at Fukushima Daiichi NPS (made available by TEPCO prior to discharge)

1	_		(Unit. Bq/	
Date of sampling		Analytical body		
*Date of discharge	Detected nuclides	TEPCO	Japan Chemical Analysis Center	
Ab	Cs-134	ND (0.68)	ND (0.77)	
May 17 th , 2017	Cs-137	ND (0.78)	ND (0.71)	
*Discharged on May 30 th	Gross β	ND (0.72)	ND (0.48)	
May 30	H-3	110	130	
- 4b	Cs-134	ND (0.81)	ND (0.73)	
May 10 th , 2017	Cs-137	ND (0.63)	ND (0.66)	
*Discharged on May 23 rd	Gross β	ND (0.75)	ND (0.61)	
May 23	H-3	130	130	
	Cs-134	ND (0.66)	ND (0.64)	
May 3 rd , 2017	Cs-137	ND (0.63)	ND (0.61)	
*Discharged on May 16 th	Gross β	ND (0.68)	ND (0.61)	
iviay 10	H-3	120	130	
	Cs-134	ND (0.79)	ND (0.68)	
April 27 th , 2017	Cs-137	ND (0.46)	ND (0.59)	
*Discharged on May 9 th	Gross β	ND (0.64)	ND (0.53)	
May 9 th	H-3	120	120	
	Cs-134	ND (0.43)	ND (0.70)	
April 19 th , 2017	Cs-137	ND (0.53)	ND (0.57)	
*Discharged on May 2 nd	Gross β	ND (0.79)	ND (0.56)	
iviay Z	H-3	120	130	

^{* *} ND: represents a value below the detection limit; values in () represent the detection limit

^{*} In order to ensure the results, Japan Chemical Analysis Center, a third-party organization, has also conducted an analysis and verified the radiation level of the sampled water.

Result of detailed analyses conducted by TEPCO, JAEA, and Japan Chemical Analysis Center (In order to confirm the validity of analysis, the Government of Japan also requests JAEA; and TEPCO requests Japan Chemical Analysis Center to conduct independent analyses)

		Analytical body			
Date of sampling	Detected nuclides	JAEA	TEPCO	Japan Chemical Analysis Center	
April 5 th , 2017	Cs-134	ND (0.0027)	ND (0.0048)	ND (0.0057)	
	Cs-137	0.0027	0.0059	ND(0.0049)	
	Gross α	ND (0.64)	ND (3.1)	ND (3.7)	
	Gross β	ND (0.46)	ND (0.72)	ND (0.63)	
	H-3	130	120	120	
	Sr-90	ND(0.0017)	ND (0.0015)	ND (0.0067)	

^{*} ND: represents a value below the detection limit; values in () represent the detection limit.

Results of analyses on the seawater sampled near the discharge point (Around South Discharge Channel)

(Unit: Bq/L)

Date of sampling	Detected nuclides	Sampling point (South discharge channel)
May 9 th , 2017	Cs-134	ND (0.64)
	Cs-137	ND (0.58)
	Gross β	11
	H-3	ND(1.5)

(Reference) (Unit: Bq/L)

Radionuclides	Operational Targets	Density Limit specified by the Reactor Regulation	World Health Organization (WHO) Guidelines for Drinking Water Quality
Cs-134	1	60	10
Cs-137	1	90	10
Gross α	_	_	_
Gross β	5 (1) *	_	_
H-3	1,500	60,000	10,000
Sr-90	_	30	10

 $[\]divideontimes$ The operational target of Gross β is 1 Bq/L in the survey which is conducted once every ten days.