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1 EXECUTIVE SUMMARY 

DNA sequencing cost dropped sharply during the past decade. Current low prices enable 
large-scale sequencing of entire crop genomes and identifying virtually all DNA variation. 
This enables genomics approaches to plant (mutation) breeding.  

Genomics approaches have the potential to significantly shorten crop breeding cycles 
because they can make the process more direct, predictive, and less dependent on the growing 
seasons. The efficiency gain comes from linking desired crop traits to the underlying, 
heritable DNA variation, and subsequently tracking the causal DNA variants through the 
breeding process in lieu of the trait, i.e., by Marker Assisted Breeding. 

Despite their disruptive impact on plant mutation breeding, the adoption of genomics 
approaches by Member States has been slow. PBGL identified the challenges of data 
analysis as one obstacle to adoption. To address this issue, PBGL developed a software 
workflow that significantly reduces the complexity of DNA sequence analyses.  

The currently most popular, because cost-effective DNA sequencing technology in plant 
breeding applications is 2nd-generation sequencing with Illumina and related technologies. 
They produce hundreds of millions of short sequencing reads per sequencing run. Handling 
the high-volumes of raw, short-read DNA sequencing data and extracting the relevant 
information is technically challenging. PBGL’s software workflow greatly simplifies this 
process and, flanked by training courses where necessary, should empower researchers in 
Member States to embrace genomics technologies. 

The workflow is available online, free and open source, ready for use by Member States. 
We provide documentation with detailed instructions. Researchers with computer 
programming expertise will not need any training. A targeted training course of one to two 
weeks should be sufficient to teach the use of the workflow to non-experts. 

Note for use:  

This protocol is made available for use as working material and is not an official IAEA 
publication. Although great care has been taken to maintain the accuracy of information 
contained in this protocol, neither the IAEA nor its Member States assume any 
responsibility for consequences which may arise from its use. As the material is still under 
development it may be updated in the future and published in final form.  Please check the 
iaea.org website for updates.  

 

Contributors to this working draft – 

WARTHMANN, N., PBGL (Text),  

MORALES ZAMBRANA, A. E., PBGL – (Illustrations) 
Please note that unless otherwise stated all images are © IAEA  
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2 BACKGROUND 

The Motivation: Mainstreaming Genomics Approaches 

Over the past decade, the economics of sequencing DNA has radically changed. With advent 
of the so-called Next Generation Sequencing technologies (NGS), prices have dropped to a 
point where researchers around the world can sequence entire genomes. In plant breeding, 
this information is used to catalogue genetic variation and identify advantageous alleles 
important for improving our crops, for example, by genetic mapping. These alleles can then 
be tracked through the breeding process with molecular (DNA) markers developed from 
linked variants. 

This is significant. Breeding relies on heritable differences between crop varieties but has, for 
the longest time, been restricted to evaluating phenotypes. Being able to efficiently associate 
desired phenotypes -the traits- with differences in the underlying genes accelerates the 
breeding process and shortens breeding cycles. Genomics-assisted breeding makes the 
breeding process more direct, predictive, and less dependent on growing seasons. 

Despite their significance for plant breeding and the rather cheap cost of DNA sequencing, 
genomic approaches are not yet mainstream. To the contrary, their efficient application has so 
far been restricted to advanced research institutions. Wide-spread adoption is slow; too slow. 
More wide-spread adoption of genomics approaches is necessary for accelerating plant 
breeding and crop improvement progress worldwide. Plant breeders around the world in their 
respective institutions must be empowered to unleash genomic tools in their work addressing 
production constraints in a plethora of crops in their respective diverse geographies, 
environments, and cultural management systems. 

Mainstreaming genomics approaches requires lowering the barrier of entry. While DNA 
sequencing capacity is readily accessible from around the world, the subsequent data analysis 
is challenging and still requires bioinformatics expertise and sophisticated hardware. 
Outsourcing options exist but are usually expensive, difficult to manage, and often don’t meet 
expectations. Ideally, researchers in Member State institutions remain in control of the entire 
process and have the capacity to analyse, use, and re-analyse their data themselves.  

PBGL has been using NGS-enabled genomics approaches for a several years now. We 
understand the challenges and have automated the initial analysis process. We are making our 
analysis pipeline in form of a software workflow publicly available, free and open source. 
This document explains the concept and is the technical documentation to the software 
workflow. The use is described in enough detail that researchers with computer programming 
expertise in Linux/Unix environments will be able to conduct analyses following the 
instructions; knowledge of python will be an advantage but note that particular 
Bioinformatics expertise is not required.  
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The Challenges of Genomics Approaches 

Genomics approaches generally comprise the steps: 

1) Experimental Design,  
2) Sample Preparation,  
3) DNA Sequencing,  
4) Data Analysis. 

a. Initial Analysis 
b. Downstream Analysis 

 

The software workflow in this protocol conducts the Initial Analysis (4a) 

The DNA Sequencing (3) itself is easily outsourced to commercial providers. These services 
are accessible from around the globe as samples are easily shipped and data is digitally 
transferred.  

The required Sample Preparation (2) prior to sequencing is sufficiently standardized and 
can either also be outsourced to the sequencing service provider or performed by the plant 
breeder. The sample preparation involves molecular biology techniques slightly more 
advanced than DNA extraction, and plant breeders will make their decision based on capacity 
and cost. For only a handful of samples it might be more cost-effective to outsource the entire 
process and ship DNA, but for dozens to hundreds of samples it can be better to perform the 
sample preparation on site and ship so-called sequencing libraries, i.e., DNA in a form that is 
ready to be put on the DNA sequencer. 

Finally, for Data Analysis (4) it is helpful to distinguish two steps:  

• Initial Analysis (4a), which reduces the raw sequencing data to the relevant 
information on DNA variation, and  

• Downstream Analysis (4b) that then draws conclusions from the sequencing 
information in context of the Experimental Design (1). 

Those are different types of analyses with very different demands on capacity with respect to 
hardware, software, and skills of the respective operator/analyst.  

Downstream Analysis (4b) and Experimental Design (1) go hand in hand. Both have been 
and remain the responsibility of the plant breeder/geneticist. The concepts have not changed, 
and most plant breeders are adequately trained. What has changed is the ease and speed of 
sequence data generation, and the unprecedented resolution of the data allowing for whole-
genome views.  

Required capacity building in this area will focus on educating plant breeders about the 
options available and accessible to them, inspiring a sense of the new possibilities for 
experimental design and teaching a few procedures on how to work with and visualise the 
data summaries derived from the sequencing data. 

Generating those summaries, however, is the task of the Initial Analysis (4a). Initial analysis 
describes the process of turning the raw sequence data that comes from the 2nd generation 
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sequencing machine (hundreds of millions of DNA sequencing reads) into information 
relevant to the plant breeder.  

The concept of the Initial Analysis is not difficult to understand, but the technical difficulties 
are such that it can currently only be performed by bioinformatics experts. Reasons are that 
the amount of data is large, the analysis comprises many subsequent interdependent steps, the 
required software packages are written in a variety of different programming languages, and 
individual projects are sufficiently different that every analysis is slightly different and the 
analysis will need adopting. 

 

Our Solution: Reducing the Complexities 

Recently, modern tools became available that can be used to abstract some of the computer 
science complexities from the user. Of interest in our context are virtual environments with 
associated software repositories (e.g., conda), and workflow management systems (e.g., 
CWL, snakemake, nextflow). With those tools in hand, it becomes possible to mainstream 
even complex analyses.  

With workflow management systems the desired analyses can be cast into series of pre-
defined interconnected steps. The user is then only concerned with providing the input, 
configuring the steps, and collecting the output, but doesn’t need to be involved with any 
intermediate step.  

In addition, the use of virtual environments and associated software repositories makes 
traditional software installations obsolete. A virtual environment can be viewed as an 
independent capsule within a computer. It is virtual, configured to contain all software that 
the workflow requires, and can be generated within minutes on any hardware, automatically 
and even on-the-fly.  

The workflow management system scales the analysis workflow to optimally use the 
provided hardware –server, cluster, grid or cloud environments without the need to modify 
the workflow definition.  

Note that, since all steps and the software are predefined, the analyses are automatically 
documented through configuration files in sufficient detail that they can be re-run by anyone, 
anywhere, and the result will be the same. This addresses the issue of reproducibility, a 
frequent complaint in biological sciences today. 

 

3 WORKFLOW IMPLEMENTATION  

This workflow capitalizes on recent developments in computer science, namely virtual 
environments and workflow management systems. The workflow conducts Initial Analysis 
to extract genetic variant information from raw 2nd-generation DNA sequencing reads as they 
are produced by short-read DNA sequencing machines. All analysis software as well as the 
workflow software is free and open source. 
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We chose Snakemake as workflow management system. Snakemake is based on Python, a 
very popular general purpose programming language. For software and virtual environment 
management we chose conda. Installations of git and conda are the only prerequisites. All 
other software will be installed through git and conda as is explained further below.  

 

Main analysis steps and respective software:  

Analysis step Software 
Prepare/clip the raw reads AdapterRemoval 
K-mer clustering kWIP and/or mash 
Read Alignment to the reference genome bwa mem and/or NextGenMap (ngm) 
Mark Duplicates samtools markdup 
Realign indels abra2 
Call Variants freebayes and/or mpileup 
Filter Variants bcftools view 
Annotate Variants snpEff 

 

Important features of our workflow are the possibility of combinatorial use of read aligners 
with variant callers and the option of having more than one reference genome. The user can 
conduct an analysis with several different combinations of tools against several reference 
genomes at the same time and later evaluate which results are best, and best suited for their 
downstream analyses. Genomes are complex, and reference genome assemblies vary greatly 
in completeness and quality. Different tools have different strengths and weaknesses. Using 
different tools can improve the overall result. 

 

All software components are publicly available on GitHub: 

Software GitHub Repository 
AdapterRemoval https://github.com/MikkelSchubert/adapterremoval  
kWIP https://github.com/kdm9/kWIP  
mash https://github.com/marbl/Mash  
bwa mem https://github.com/lh3/bwa  
NextGenMap (ngm) https://github.com/Cibiv/NextGenMap  
abra2 https://github.com/mozack/abra2  
samtools/bcftools https://github.com/samtools  
SNPeff https://github.com/pcingola/SnpEff  
 

  

https://github.com/MikkelSchubert/adapterremoval
https://github.com/kdm9/kWIP
https://github.com/marbl/Mash
https://github.com/lh3/bwa
https://github.com/Cibiv/NextGenMap
https://github.com/mozack/abra2
https://github.com/samtools
https://github.com/pcingola/SnpEff
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4 AVAILABILITY OF THE WORKFLOW AND DOCUMENTATION 

The Snakemake Workflow software is hosted on github.com  
https://github.com/pbgl/dna-proto-workflow  

 
Detailed technical documentation in online at read-the-docs.io  

https://dna-proto-workflow-master.readthedocs.io/en/latest/  

 

Disclaimer 

This software code is made available by the IAEA for general use under the MIT licence. It 
contains IAEA proprietary material and uses third-party open source code. The IAEA officer 
responsible is N Warthmann. Whilst all efforts have been made to ensure the code contains 
no errors, the software is provided “as is”, without warranty of any kind, either express or 
implied, including, without limitation, warranties of merchantability, fitness for a particular 
purpose and non-infringement.  The IAEA retains the right to update and modify the code at 
any time. Under no circumstances shall the IAEA be liable for any loss, damage, liability or 
expense incurred or suffered that is claimed to have resulted from the use of this code, 
including, without limitation, any fault, error, omission, interruption or delay with respect 
thereto. The use of the code is at the User’s sole risk. Under no circumstances, including but 
not limited to negligence, shall the IAEA or its affiliates be liable for any direct, indirect, 
incidental, special or consequential damages, even if the IAEA has been advised of the 
possibility of such damages. The User specifically acknowledges and agrees that the IAEA is 
not liable for any conduct of any User. The use of particular designations of countries or 
territories does not imply any judgement by the IAEA as to the legal status of such countries 
or territories, of their authorities and institutions or of the delimitation of their boundaries. 
The mention of names of specific companies or products (whether or not indicated as 
registered) does not imply any intention to infringe proprietary rights, nor should it be 
construed as an endorsement or recommendation on the part of IAEA. Unless otherwise 
indicated the copyright lies with IAEA or is published under licence, or with permission from 
the copyright owners. 

  

https://github.com/pbgl/dna-proto-workflow
https://dna-proto-workflow-master.readthedocs.io/en/latest/
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https://snakemake.readthedocs.io/en/stable/
https://docs.conda.io/en/latest/
https://bioconda.github.io/
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6 WORKFLOW TECHNICAL DOCUMENTATION 

6.1 OVERVIEW AND PREREQUISITES 

This collection of Snakemake rules constitutes a workflow for the automated analysis of 
high-throughput DNA sequencing data. We use it mostly for genome re-sequencing data 
produced with Illumina-type sequencing instruments. The workflow is designed to run the 
subsequent steps of the entire analyses automatically.  

 

6.1.1 The (brief) Principle of the Workflow Language Snakemake 

In Snakemake, analysis workflows are defined as a series of rules. In our case, rules define 
the analysis steps. Each rule has input and output files. Calling a rule will invoke all 
necessary upstream rules. It is hence generally sufficient to request the desired output file(s) 
of the downstream most rule and the entire workflow will be executed. In practice, users will 
provide input files, configure project meta information, adjust configuration parameters, and 
execute snakemake . The workflow will then automatically perform all the (necessary) 
analysis steps to produce the defined output. 

In general, a rule will be run if: 

• Snakemake realizes that the expected output files of a rule are not (yet) present, or 
• Snakemake realizes that the expected input files or configuration parameters of a rule 

have changed since the last run. 

Hence, when analyses are re-run, existing and valid intermediate output files from a previous 
run are re-used, saving precious time and resources. For details, please consult the 
Snakemake documentation. For the different use cases in this workflow, invoke the rule that 
produces the desired output. 

 

6.1.2 Analysis Workflow Use Cases 

For this particular workflow we distinguish two different use cases: De-novo and variant 
calling . 

6.1.2.1 “De-novo” 
Choosing this option will conduct a reference-free comparison of samples based on the raw 
sequencing reads using k-mers. The workflow invokes the software tools kWIP and/or mash 
and outputs distance matrices and PCA plots. A flowchart illustrating the summarised 
workflow can be found in this document under section 7.1. The workflow for this use case 
consists of the following steps: 

# Task Rule softwares 
1 Prepare/clip the raw reads readQC AdapterRemoval 
2 Calculate distances denovo kWIP and/or mash 
3 Perform PCA and plot denovo Utils/R-Scripts 

 

https://snakemake.readthedocs.io/en/stable/index.html
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• Invoke this option by running the rule: rules.denovo.input  

 

Required input for  rules.denovo.input  are fastq files and the workflow will return distance 
matrices between samples produced by kWIP and/or mash.  

> NOTE: We recommend performing such de-novo analysis for every project. Clustering at 
the level of sequencing runs can be used to confirm metadata and detect mixups. 

 

6.1.2.2 “Variant Calling” 
Choosing this option will run a full re-sequencing analysis ending in filtered bcf/vcf files. It 
detects variants and genotypes in sets of samples based on the alignments of the sequencing 
reads against one or several user-defined reference genome(s). Reads can be aligned with 
bwa and/or NextGenMap (ngm), and variants can be called with freebayes and/or mpileup. 
Between read alignments and variant calling, PCR duplicates are marked (with samtools 
markdup) and indels are realigned (using abra2). If reference genome annotation is provided, 
the effects of variants on gene integrity can also be predicted using the software snpEff. A 
flowchart illustrating the summarised workflow can be found in this document under section 
7.2. 

The full workflow for this use case consists of the following steps: 

# Task Rules softwares 
1 Prepare/clip the raw reads ReadQC AdapterRemoval 
2 Align the reads to the reference genome align bwa and/or ngm 
3 Mark Duplicates align samtools fixmate 

samtools sort 
samtools markdup 

4 Realign indels align samtools merge 
abra2 

5 Call Variants varcall freebayes and/or mpileup 
6 Filter Variants varcall bcftools view 
7 Annotate Variants annotate snpEff 

 

This option can be invoked in 2 ways: 

• selecting rules.varcall.input  will result in one or several vcf files, one for each 
combination of sample-set, reference genome, read aligner, variant caller, and variant 
filter. 

• selecting the rule rules.annotate.input will result in one or several annotated vcf files 
and additional summaries; running rules.annotate.input  is only meaningful when a 
genome annotations is available and provided in form of a snpEff database. Currently, 
only one reference genome annotation can be provided at a time. Hence, invoking the 
variant calling workflow through rules.annotate.input , will restrict the workflow 
upstream to only one reference genome. 

https://pcingola.github.io/SnpEff/se_introduction/


12 
 

Required input files are fastq files and a genome reference sequence(s) (fasta). The rule 
snpeff  in addition depends on a genome annotation in form of a snpEff database matching the 
reference genome. For maximum flexibility and ease of troubleshooting we recommend to 
first run the re-sequencing analysis by invoking rules.varcall.input , and upon successful 
completion invoke the workflow again, this time selecting/uncommenting rules.annotate.input . 

6.1.2.3  “Annotate” 
Choosing the option rules.annotate.input will annotate bcf/vcf files found in 
output/variants/final/ and write annotated vcf.gz files to output/variants_annotated/. This 
analysis has only one step: 

 

# Task Rules softwares 
1 Annotate Variants annotate snpEff 

 

Typically, rules.annotate.input  is run after a completed run of rules.varcall.input . A snpEff run 
will complete within a matter of minutes. It will run on files specified through entries in the 
snpeff section of the config.yml  file: 

• config['snpeff']['ref']  one chosen reference genome, 
• config['snpeff']['database']  one corresponding snpEff database,  
• and one or several of ['samplesets'] , ['aligners'] , ['callers'] , and ['filters']   

that together specify the files to annotate. 

 

6.1.3 Hardware Requirements 

The workflow is parallelised and Snakemake will make efficient use of available resources 
on local machines as well as on compute clusters. It will run faster the more resources are 
available, but it performs fine on smaller machines. For routine applications we have used the 
workflow on a budged workstation, HP Z820 with 32 cores, 64 GB RAM running Ubuntu 
16.04, and on a Virtual Machine in the cloud, AZURE with 16 cores and 512 GB RAM 
running Ubuntu 18.04. 

Snakemake allows for fine-tuning resource allocation to the individual rules, i.e., number of 
processors and memory. We configured each rule with reasonable defaults, but they can be 
tailored to your particular size project and hardware. For details please consult the 
Snakemake documentation. In general though, if limited by memory, do not parallelise too 
aggressively. 

6.1.4 Software Dependencies 

We recommend running the workflow in its own conda environment  on a Linux Server. 
Dependencies are listed in envs/condaenv.yml  and envs/additional.yml . A brief explanation how 
to use these files to generate the conda environment is further below. For comprehensive 

https://snakemake.readthedocs.io/en/stable/index.html
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explanation please consult the conda documentation. For software that is not available 
through conda on some important platforms we make the specific binaries available in envs/ ; 
currently mainly abra2.jar. 

 

6.2 WORKFLOW USE CHECKLIST  

Steps: 

1. Create a new github repository in your github account using this workflow as a 
template 

2. Clone your newly created repository to your local system where you want to perform 
the analysis 

3. Create and activate the conda environment  
4. Provide reference genome(s) and annotation(s) in /genomes and annotation/   
5. Specify the locations of input files and their meta data in /metadata/sample2runlib.csv  
6. Provide lists of samples as sets to analyse in metadata/samplesets/  
7. Uncomment the respective workflow option for your use case in the Snakefile  
8. Configure software parameters in config.yml  
9. Adapt snpeff.config  (Optional in case the snpeff  rule will be called) 
10. Run snakemake  

 

For standard applications no additional edits are necessary. The rules reside in rules/*.smk . 
Most rules have explicit shell commands with transparent flag settings. Expert users can 
change these for additional control. 

 

6.3 WORKFLOW USE IN DETAIL 

We recommend using Linux, managing the software dependencies trough conda/mamba and 
running the workflow in a dedicated conda virtual environment. The virtual environment is 
created, activated, and then all software will be available. 

6.3.1 Creating the Virtual Environment (conda) 

The preferred way to create the environment is with mamba . The code below will install 

mamba (if not already available), create a virtual environment named “dna-proto”, and 
activate it. If you are new to conda then please consult the conda documentation to get 
started. 

$ conda install mamba  
$ mamba env create --file env/all-dependencies.yml  
$ conda activate dna-proto  
 

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/cloning-a-repository
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
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Alternatively (and only if the above doesn’t work as intended), create the empty environment 
and then conda install  (or mamda install ) the individual programs manually. They are listed in 
env/all-dependencies.yml.  Specify the correct channel and software version where required. 
Below we give an example, but please consult the conda (and bioconda) documentation.  

Example: 

$ conda create -- name dna-proto 
$ conda install -c bioconda samtools=1.9  
Etc. 
 

In case of manual installs, it is convenient to add all required channels to the conda config . 
You will need below channels: 

$ conda config --show channels  
channels: 
       - defaults 
       - bioconda 
       - conda-forge 
       - r  
$ conda config --add channels bioconda  
$ conda install samtools=1.9  
 

The required channels are listed in the respective *.yml  files. Configuring channels has the 
pitfall of rare ambiguities and collisions. Please consult the conda documentation for 
“managing channels”. 

Once set up, don’t forget to activate your conda environment: 

$ conda activate dna-proto 
 

6.3.2 Reference Genome  

The workflow will look for the reference genome(s) and its associated files in 
genomes_and_annotations/ . We provide an example directory tree in 
genomes_annotations/readme . We recommend creating a separate directory for each reference 
genome. They can be softlinks. Each reference genome directory must contain the necessary 
assembly file (.fa or .fna) and the associated files required by the aligners. Generate those 
files in this directory from the assembly file (fasta: .fa or .fna) like so: 

$ samtools faidx <reference-genome.fa>  
$ bwa index -a bwtsw <reference-genome.fa>  
$ ngm -r <reference-genome.fa>  
 

# directory tree of the reference genome directory once fully prepared 

~/genomes_and_annotations/  
├── GCF_004118075.1_ASM411807v1 
     ├── GCF_004118075.1_ASM411807v1_genomic.fna  
     ├── GCF_004118075.1_ASM411807v1_genomic.fna.amb  

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://bioconda.github.io/
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
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     ├── GCF_004118075.1_ASM411807v1_genomic.fna.ann  
     ├── GCF_004118075.1_ASM411807v1_genomic.fna.bwt  
     ├── GCF_004118075.1_ASM411807v1_genomic.fna-enc.2.ngm  
     ├── GCF_004118075.1_ASM411807v1_genomic.fna.fai  
     ├── GCF_004118075.1_ASM411807v1_genomic.fna-ht-13-2.3.ngm  
     ├── GCF_004118075.1_ASM411807v1_genomic.fna.pac  
     └── GCF_004118075.1_ASM411807v1_genomic.fna.sa  
 

6.3.3 Reference Genome Annotation  

In order to annotate variant effects using snpEff you will need a snpEff database 
( snpEffectPredictor.bin ) for the relevant reference genome. The location of the snpeff  database 
is configured in snpeff.config . It is currently set to genomes_and_annotations/snpeffdata/  and 
again, we recommend separate subdirectories for the reference genomes also in this directory. 
Appending “_snpeff” to these directory names will help avoid confusion. In order to create a 
snpeff  database, this <reference_genome>_snpeff  directory must contain the reference genome 
and the annotation in files named sequences.fa  and genes.gff ; they again can be soft links. 
(See genomes_and_annotations/snpeffdata/readme .) For building the database you will need to 
add the respective entry in snpeff.config  and then, from the root directory of the workflow (the 
directory that contains the snpeff.config  file), execute: 

 

$ snpEff build –gff3 genomes_and_annotations/snpeffdata/<reference-genome>_snpeff  
 

While a .gtf  file can also be used (-gtf 22), we have better experience building databases 
from .gff  files. For a detailed explanation of the snpeff  build process please consult the 
snpEff documentation. 

Below is an example directory tree of genomes_and_annotations/  for a cowpea reference 
genome downloaded from NCBI. Notice that we store the reference genomes elsewhere and 
use soft links. Compare also to our entries in snpeff.config  under “Non-standard Databases” 
and replicate accordingly. The database snpEffectPredictor.bin  will be generated by snpEff build . 

genomes_and_annotations/ 
├── GCF_004118075.1_ASM411807v1 -> ~/genomes/Cowpea/ 
├── readme 
└── snpeffdata 
     └── GCF_004118075.1_ASM411807v1_snpeff 
         ├── genes.gff -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_genomic.gff 
         ├── genes.gtf -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_genomic.gtf 
         ├── protein.fa -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_protein.faa 
         ├── sequences.fa -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_genomic.fna 
         └── snpEffectPredictor.bin  
 

https://pcingola.github.io/SnpEff/se_introduction/
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6.3.4 Providing Required Meta Information 

6.3.4.1 Samplesets 
We use the term sample as the entity of interest. Our workflows call variants on samples 
within one set. Lists of sample names must be provided as text file ( .txt ) in 
/metadata/samplesets/ . Each file defines a set. The samplesets:  in config.yml  refer to those files 
and must match the filenames. We implemented a glob: all_samples, which will have the 
effect of concatenating all *.txt  files in /metadata/samplesets/  into an additional set comprising 
all samples across all sets. The intention is to enable easy addition or removal of samples 
to/from an existing analysis. 

 

6.3.4.2  Sample Definitions 
In practice, the unit of interest oftentimes is the individual (plant). DNA is extracted from an 
individual and turned into one or several sequencing libraries that are then sequenced in one 
or several sequencing runs. In order to compare individuals all respective fastq files need to 
be assigned to the same sample. For our workflow, the run - library - sample relationships 
need to be defined in /metadata/sample2runlib.csv making explicit which fastq files constitute 
the samples. The entries in columns run and library are together used as the primary key for 
the sequencing run and thus the fastq file(s). The user must make sure that any run – library 
combination is unique. Sequencing runs are assigned to the same sample through an 
identical entry in the sample column. fastq files can be provided either as separate forward 
and reverse read files (fq1, fq2) or as interleaved fastq (il_fq), with the respective other 
column(s) empty. Within one sample2runlib.csv  file interleaved, and two-file input can be 
mixed. 

Example sample2runlib.csv  file: 

run Library sample fq_1 fq_2 il_fq 
Run1 A-500bp A <path to file> <path to file>  
Run1 A-300bp A <path to file> <path to file>  
Run2 A-500bp A <path to file> <path to file>  
Run2 B-300b p B   <path to file> 
Run2 B-500bp B   <path to file> 
Run1 C-500bp C <path to file> <path to file>  

 

6.3.4.3 Regions of Interest for Variant Calling 
Variant calling can be restricted to particular regions of interest through 
metadata/contigs_of_interest.bed : A file in bed file format listing identifier, start-, and end-
positions (tab delimited, no header). This is helpful for exome capture data but also to restrict 
the analysis to specific chromosomes. Genome assemblies often contain the main 
chromosomes and in addition many orphan fragments that often are not of interest. Below 
example will restrict variant calling to the 11 chromosomes plus the chloroplast of cowpea. 
The hundreds of additional contigs in the cowpea reference genome are available for read 
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mapping, but variants will not be called for them and their variants will subsequently not be 
present in the bcf/vcf files. Note that lines starting with ‘#’ will be disregarded. 

 

Example contigs_of_interest.bed  file: 

NC_040279.1 0 42129361 
NC_040280.1 0 33908088 
NC_040281.1 0 65292630 
NC_040282.1 0 42731077 
NC_040283.1 0 48746289 
NC_040284.1 0 34463471 
NC_040285.1 0 40876636 
NC_040286.1 0 38363498 
NC_040287.1 0 43933251 
NC_040288.1 0 41327797 
NC_040289.1 0 41684185 
NC_018051.1 0 152415 
 

6.3.5 Workflow Configuration 

6.3.5.1 config.yml 
Central place for the user to configure the workflow behaviour and software parameters is 
config.yml . There are comments in the file that explain the configuration parameters and 
options. 

In Snakemake, calling a rule will trigger running of the upstream rules. When editing 
(/config.yml)  it is important to only configure the intended most downstream rule ( varcall: , 
annotate: , or denovo: ). These settings will be propagated upstream. qc:  is independent and 
will require editing, particularly the _DEFAULT_  adaptors used. The standard adaptors for 
Truseq- and Nextera-Libraries are given for reference, paste under _DEFAULT_  as required. 

An important configuration parameter is the location of a suitable temporary directory 
(“tmp/”). Several rules make extensive use of the “tmp/” directory to temporarily store large 
files. Oftentimes, standard home directories on compute servers or cluster nodes are too 
small. Central place for the configuration of the “tmp/” directory is currently under the abra2 
configuration options ( abra2:temp: ). 

 
6.3.5.2 Additional Configuration 
Expert users can change the rules themselves by editing rules/*.rules.smk . Use caution! We 
have chosen reasonable default settings and recommend modifying rules only when you 
know what you are doing. When allocating more cores to rules, pay attention that some rules 
are very memory intensive and some shell commands are piped and are in fact using more 
than 1 core per process. 
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6.3.6 Running the Workflow 

To run the workflow, un-comment the respective rule for the desired use case in the Snakefile  
and run snakemake . 

 

$ snakemake –npr  
$ snakemake –j 6 --no-temp -kpr  
 

For details on command line options for snakemake please consult the Snakemake 
documentation. Un-comment only the one most downstream rule for your use case. 
Currently, these use case rules are: 

# USER OPTIONS 
#        rules.denovo.input, 
#        rules.varcall.input, 
#        rules.annotate.input, 
 

A rule that encounters missing input files will invoke the respective upstream rule(s). E.g., 
when rules.annotate.input  is uncommented and snakemake is run for the first time, the entire 
workflow from readqc  (= adapter and quality clipping), align  (= read alignments, duplicate 
marking, indel realignment), varcall  (= variant calling), and annotate (= variant functional 
annotation) will run in one go. In case no snpeff  database is supplied, then rule 
rules.annotate.input  cannot be run. Use rules.varcall.input  instead. 

When configuring config.yml , keep in mind that configuration parameters of a downstream 
rule take precedence because parameters have to propagate upstream. I.e., When running 
varcall , the user must set the alignment parameters in the varcall:  section; same for the 
annotate:  parameters; they must be set under snpeff: .  

> Note: Adjusting presumed upstream parameters e.g., under align:  will not have the intended 
effect. Only in special circumstances will the rules.align.input  be run by itself and only then 
will you have to adjust parameters in the align:  section. 

The workflow runs on samples in sets as listed in samplesets/*.txt  and defined in 
/metadata/sample2runlib.csv . Sample names listed in samplesets/*.txt  must correspond to the 
entries in the sample column in /metadata/sample2runlib.csv . 

 

6.3.7 Configuring the Workflow Use Case 

6.3.7.1 De-novo Analysis  
Option denovo  can be used to check the relatedness of sequencing runs and/or samples 
without the use of any reference genome. It will perform a comparative analysis based on k-

https://snakemake.readthedocs.io/en/stable/index.html


19 
 

mers on the raw data and output distance matrices. We recommend performing a de-novo 
analysis at the very start of every project at the “sequencing run”-level prior to any merging 
of runs into samples. This can help to detect mix-ups and mislabels. Run-level clustering is 
achieved by providing unique names for each sequencing run in the sample column of 
metadata/sample2runlib.csv . De-novo analysis is invoked by calling rules.denovo.input  
(Uncomment the respective line in the Snakefile , and only this line). Pay attention to maintain 
the correct indentation. 

rule all: 
    input: 
# USER OPTIONS 
        rules.denovo.input, 
#        rules.varcall.input, 
#        rules.annotate.input, 
# EXPERT OPTIONS 
#        rules.readqc.input, 
#        rules.align.input, 
#        rules.stats.input, 
 

6.3.7.2 Variant Calling – Standard Re-Sequencing Analysis  
Running rules.varcall.input  will call variants and genotype samples with respect to one or 
several reference genomes. varcall  will compare samples listed in metadata/samplesets/  with 
one another, as defined in the sample column. Invoke this analysis by uncommenting 
rules.varcall.input  (and only this line). Pay attention to maintain the correct indentation. 

 

rule all: 
    input: 
# USER OPTIONS 
#        rules.denovo.input, 
        rules.varcall.input, 
#        rules.annotate.input, 
# EXPERT OPTIONS 
#        rules.readqc.input, 
#        rules.align.input, 
#        rules.stats.input, 
 

6.3.7.3 Variant Annotation – The Effects of Variants on Gene Function  
If a snpEff library for this (exact) reference genome is provided then the entire workflow can 
in principle be invoke by uncommenting rules.annotate.input  (and only this line). Pay attention 
to maintain the correct indentation. 

 

rule all: 
    input: 
# USER OPTIONS 
#       rules.denovo.input, 
#        rules.varcall.input, 
        rules.annotate.input, 
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# EXPERT OPTIONS 
#        rules.readqc.input, 
#        rules.align.input, 
#        rules.stats.input, 
 

Currently, rules.annotate.input  will operate only on one reference genome at a time. The rule 
will hence propagate upstream only one reference genome as requirement. If variants 
detected against several different reference genomes need annotating, then first run the 
varcall  rule specifying all reference genomes and subsequently invoke the annotate rule 
separately for each reference genome annotation. 

 

6.3.7.4 Expert Options 
In cases where only adapter clipping or read alignment is desired, those processes can be 
invoked separately by the respective rules, rules.readqc.input  or rules.align.input . There are 
separate configurations sections for those in config.yml  which must be used. Alignment will 
trigger prior adaptor clipping. Invoking rules.stats.input  will produce summary statistics. They 
will require read alignments and are meaningful for generic varcall  runs. 

 

6.4 WORKFLOW OUTPUTS 

 

After completion, all output of the workflow, including logs and stats, will be in output/ . 

• Clipped reads (in interleaved fastq) format are in output/reads/  
• BAM files with In/Del-realigned alignments are in output/abra/  
• BCF/VCF files of the filtered variants including respective index files are in 

output/variants/final/  
• The snpEff-annotated variant file is in output/annotated_variants/snpeff/  

 

VCF files in output/variants/final/  have been filtered with bcftools view according to the user 
defined filter settings in config.yml .  

For loading into IGV, use the In/Del realigned BAM file in output/abra/  and the *.vcf.gz  files 
of the filtered variants. Note that IGV requires the vcf.gz.tbi index. 
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6.5  SUPPORT 

6.5.1 License 

The snakemake workflow dna-proto-workflow is released under the MIT License. 

 

6.5.2 Contributors  

This workflow was developed by Norman Warthmann, Plant Breeding and Genetics 
Laboratory of the FAO/IAEA Joint Division (PBGL), with important contributions from 
Kevin D Murray (Australian National University) and Marcos Conde, PBGL. The 
documentation was written by Norman Warthmann with contributions from Anibal Morales, 
PBGL. 

 

6.5.3 Citing  

When publishing results obtained using this workflow please cite the link to the original 
github repository (https://github.com/pbgl/dna-proto-workflow) specifying the release. 

 

6.5.4 Reproducibility 

Workflows help addressing reproducibility issues. Consider making your version of the 
workflow, configured for your data, available upon publication of your results. Check out the 
archive options of Snakemake. 

 

6.5.5 Getting Help 

Feel free to let us know if you are using our workflow and don’t hesitate to contact us with 
questions: email n.warthmann@iaea.org 

 
  

https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#sustainable-and-reproducible-archiving
mailto:n.warthmann@iaea.org
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7 WORKFLOW ILLUSTRATIONS (GRAPHICS) 

7.1 DENOVO WORKFLOW 
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7.2 VARCALL WORKFLOW 
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