
1

A Software Workflow for Automated
Analysis of Genome (Re-)Sequencing

Projects
A LABORATORY PROTOCOL

Please note: This is not an official IAEA publication but is made available as working
material. The material has not undergone an official review by the IAEA. The views
expressed do not necessarily reflect those of the International Atomic Energy Agency or its
Member States and remain the responsibility of the contributors.

The use of particular designations of countries or territories does not imply any judgement
by the publisher, the IAEA, as to the legal status of such countries or territories, of their
authorities and institutions or of the delimitation of their boundaries.

The mention of names of specific companies or products (whether or not indicated as
registered) does not imply any intention to infringe proprietary rights, nor should it be
construed as an endorsement or recommendation on the part of the IAEA.

Plant Breeding and Genetics Laboratory, Seibersdorf, Austria

Version 2_10_05_2022

2

CONTENT

1 EXECUTIVE SUMMARY 3

2 BACKGROUND 4

3 WORKFLOW IMPLEMENTATION 6

4 AVAILABILITY OF THE WORKFLOW AND DOCUMENTATION 8

5 LITERATURE 9

6 WORKFLOW TECHNICAL DOCUMENTATION 10

6.1 Overview and Prerequisites 10
6.1.1 The (brief) Principle of the Workflow Language Snakemake 10
6.1.2 Analysis Workflow Use Cases 10
6.1.3 Hardware Requirements 12
6.1.4 Software Dependencies 12

6.2 Workflow use Checklist 13

6.3 Workflow use in detail 13
6.3.1 Creating the Virtual Environment (conda) 13
6.3.2 Reference Genome 14
6.3.3 Reference Genome Annotation 15
6.3.4 Providing Required Meta Information 16
6.3.5 Workflow Configuration 17
6.3.6 Running the Workflow 18
6.3.7 Configuring the Workflow Use Case 18

6.4 Workflow Outputs 20

6.5 Support 21
6.5.1 License 21
6.5.2 Contributors 21
6.5.3 Citing 21
6.5.4 Reproducibility 21
6.5.5 Getting Help 21

7 WORKFLOW ILLUSTRATIONS (GRAPHICS) 22

7.1 Denovo Workflow 22

7.2 Varcall Workflow 23

3

1 EXECUTIVE SUMMARY

DNA sequencing cost dropped sharply during the past decade. Current low prices enable
large-scale sequencing of entire crop genomes and identifying virtually all DNA variation.
This enables genomics approaches to plant (mutation) breeding.

Genomics approaches have the potential to significantly shorten crop breeding cycles
because they can make the process more direct, predictive, and less dependent on the growing
seasons. The efficiency gain comes from linking desired crop traits to the underlying,
heritable DNA variation, and subsequently tracking the causal DNA variants through the
breeding process in lieu of the trait, i.e., by Marker Assisted Breeding.

Despite their disruptive impact on plant mutation breeding, the adoption of genomics
approaches by Member States has been slow. PBGL identified the challenges of data
analysis as one obstacle to adoption. To address this issue, PBGL developed a software
workflow that significantly reduces the complexity of DNA sequence analyses.

The currently most popular, because cost-effective DNA sequencing technology in plant
breeding applications is 2nd-generation sequencing with Illumina and related technologies.
They produce hundreds of millions of short sequencing reads per sequencing run. Handling
the high-volumes of raw, short-read DNA sequencing data and extracting the relevant
information is technically challenging. PBGL’s software workflow greatly simplifies this
process and, flanked by training courses where necessary, should empower researchers in
Member States to embrace genomics technologies.

The workflow is available online, free and open source, ready for use by Member States.
We provide documentation with detailed instructions. Researchers with computer
programming expertise will not need any training. A targeted training course of one to two
weeks should be sufficient to teach the use of the workflow to non-experts.

Note for use:

This protocol is made available for use as working material and is not an official IAEA
publication. Although great care has been taken to maintain the accuracy of information
contained in this protocol, neither the IAEA nor its Member States assume any
responsibility for consequences which may arise from its use. As the material is still under
development it may be updated in the future and published in final form. Please check the
iaea.org website for updates.

Contributors to this working draft –

WARTHMANN, N., PBGL (Text),

MORALES ZAMBRANA, A. E., PBGL – (Illustrations)
Please note that unless otherwise stated all images are © IAEA

4

2 BACKGROUND

The Motivation: Mainstreaming Genomics Approaches

Over the past decade, the economics of sequencing DNA has radically changed. With advent
of the so-called Next Generation Sequencing technologies (NGS), prices have dropped to a
point where researchers around the world can sequence entire genomes. In plant breeding,
this information is used to catalogue genetic variation and identify advantageous alleles
important for improving our crops, for example, by genetic mapping. These alleles can then
be tracked through the breeding process with molecular (DNA) markers developed from
linked variants.

This is significant. Breeding relies on heritable differences between crop varieties but has, for
the longest time, been restricted to evaluating phenotypes. Being able to efficiently associate
desired phenotypes -the traits- with differences in the underlying genes accelerates the
breeding process and shortens breeding cycles. Genomics-assisted breeding makes the
breeding process more direct, predictive, and less dependent on growing seasons.

Despite their significance for plant breeding and the rather cheap cost of DNA sequencing,
genomic approaches are not yet mainstream. To the contrary, their efficient application has so
far been restricted to advanced research institutions. Wide-spread adoption is slow; too slow.
More wide-spread adoption of genomics approaches is necessary for accelerating plant
breeding and crop improvement progress worldwide. Plant breeders around the world in their
respective institutions must be empowered to unleash genomic tools in their work addressing
production constraints in a plethora of crops in their respective diverse geographies,
environments, and cultural management systems.

Mainstreaming genomics approaches requires lowering the barrier of entry. While DNA
sequencing capacity is readily accessible from around the world, the subsequent data analysis
is challenging and still requires bioinformatics expertise and sophisticated hardware.
Outsourcing options exist but are usually expensive, difficult to manage, and often don’t meet
expectations. Ideally, researchers in Member State institutions remain in control of the entire
process and have the capacity to analyse, use, and re-analyse their data themselves.

PBGL has been using NGS-enabled genomics approaches for a several years now. We
understand the challenges and have automated the initial analysis process. We are making our
analysis pipeline in form of a software workflow publicly available, free and open source.
This document explains the concept and is the technical documentation to the software
workflow. The use is described in enough detail that researchers with computer programming
expertise in Linux/Unix environments will be able to conduct analyses following the
instructions; knowledge of python will be an advantage but note that particular
Bioinformatics expertise is not required.

5

The Challenges of Genomics Approaches

Genomics approaches generally comprise the steps:

1) Experimental Design,
2) Sample Preparation,
3) DNA Sequencing,
4) Data Analysis.

a. Initial Analysis
b. Downstream Analysis

The software workflow in this protocol conducts the Initial Analysis (4a)

The DNA Sequencing (3) itself is easily outsourced to commercial providers. These services
are accessible from around the globe as samples are easily shipped and data is digitally
transferred.

The required Sample Preparation (2) prior to sequencing is sufficiently standardized and
can either also be outsourced to the sequencing service provider or performed by the plant
breeder. The sample preparation involves molecular biology techniques slightly more
advanced than DNA extraction, and plant breeders will make their decision based on capacity
and cost. For only a handful of samples it might be more cost-effective to outsource the entire
process and ship DNA, but for dozens to hundreds of samples it can be better to perform the
sample preparation on site and ship so-called sequencing libraries, i.e., DNA in a form that is
ready to be put on the DNA sequencer.

Finally, for Data Analysis (4) it is helpful to distinguish two steps:

• Initial Analysis (4a), which reduces the raw sequencing data to the relevant
information on DNA variation, and

• Downstream Analysis (4b) that then draws conclusions from the sequencing
information in context of the Experimental Design (1).

Those are different types of analyses with very different demands on capacity with respect to
hardware, software, and skills of the respective operator/analyst.

Downstream Analysis (4b) and Experimental Design (1) go hand in hand. Both have been
and remain the responsibility of the plant breeder/geneticist. The concepts have not changed,
and most plant breeders are adequately trained. What has changed is the ease and speed of
sequence data generation, and the unprecedented resolution of the data allowing for whole-
genome views.

Required capacity building in this area will focus on educating plant breeders about the
options available and accessible to them, inspiring a sense of the new possibilities for
experimental design and teaching a few procedures on how to work with and visualise the
data summaries derived from the sequencing data.

Generating those summaries, however, is the task of the Initial Analysis (4a). Initial analysis
describes the process of turning the raw sequence data that comes from the 2nd generation

6

sequencing machine (hundreds of millions of DNA sequencing reads) into information
relevant to the plant breeder.

The concept of the Initial Analysis is not difficult to understand, but the technical difficulties
are such that it can currently only be performed by bioinformatics experts. Reasons are that
the amount of data is large, the analysis comprises many subsequent interdependent steps, the
required software packages are written in a variety of different programming languages, and
individual projects are sufficiently different that every analysis is slightly different and the
analysis will need adopting.

Our Solution: Reducing the Complexities

Recently, modern tools became available that can be used to abstract some of the computer
science complexities from the user. Of interest in our context are virtual environments with
associated software repositories (e.g., conda), and workflow management systems (e.g.,
CWL, snakemake, nextflow). With those tools in hand, it becomes possible to mainstream
even complex analyses.

With workflow management systems the desired analyses can be cast into series of pre-
defined interconnected steps. The user is then only concerned with providing the input,
configuring the steps, and collecting the output, but doesn’t need to be involved with any
intermediate step.

In addition, the use of virtual environments and associated software repositories makes
traditional software installations obsolete. A virtual environment can be viewed as an
independent capsule within a computer. It is virtual, configured to contain all software that
the workflow requires, and can be generated within minutes on any hardware, automatically
and even on-the-fly.

The workflow management system scales the analysis workflow to optimally use the
provided hardware –server, cluster, grid or cloud environments without the need to modify
the workflow definition.

Note that, since all steps and the software are predefined, the analyses are automatically
documented through configuration files in sufficient detail that they can be re-run by anyone,
anywhere, and the result will be the same. This addresses the issue of reproducibility, a
frequent complaint in biological sciences today.

3 WORKFLOW IMPLEMENTATION

This workflow capitalizes on recent developments in computer science, namely virtual
environments and workflow management systems. The workflow conducts Initial Analysis
to extract genetic variant information from raw 2nd-generation DNA sequencing reads as they
are produced by short-read DNA sequencing machines. All analysis software as well as the
workflow software is free and open source.

7

We chose Snakemake as workflow management system. Snakemake is based on Python, a
very popular general purpose programming language. For software and virtual environment
management we chose conda. Installations of git and conda are the only prerequisites. All
other software will be installed through git and conda as is explained further below.

Main analysis steps and respective software:

Analysis step Software
Prepare/clip the raw reads AdapterRemoval
K-mer clustering kWIP and/or mash
Read Alignment to the reference genome bwa mem and/or NextGenMap (ngm)
Mark Duplicates samtools markdup
Realign indels abra2
Call Variants freebayes and/or mpileup
Filter Variants bcftools view
Annotate Variants snpEff

Important features of our workflow are the possibility of combinatorial use of read aligners
with variant callers and the option of having more than one reference genome. The user can
conduct an analysis with several different combinations of tools against several reference
genomes at the same time and later evaluate which results are best, and best suited for their
downstream analyses. Genomes are complex, and reference genome assemblies vary greatly
in completeness and quality. Different tools have different strengths and weaknesses. Using
different tools can improve the overall result.

All software components are publicly available on GitHub:

Software GitHub Repository
AdapterRemoval https://github.com/MikkelSchubert/adapterremoval
kWIP https://github.com/kdm9/kWIP
mash https://github.com/marbl/Mash
bwa mem https://github.com/lh3/bwa
NextGenMap (ngm) https://github.com/Cibiv/NextGenMap
abra2 https://github.com/mozack/abra2
samtools/bcftools https://github.com/samtools
SNPeff https://github.com/pcingola/SnpEff

https://github.com/MikkelSchubert/adapterremoval
https://github.com/kdm9/kWIP
https://github.com/marbl/Mash
https://github.com/lh3/bwa
https://github.com/Cibiv/NextGenMap
https://github.com/mozack/abra2
https://github.com/samtools
https://github.com/pcingola/SnpEff

8

4 AVAILABILITY OF THE WORKFLOW AND DOCUMENTATION

The Snakemake Workflow software is hosted on github.com
https://github.com/pbgl/dna-proto-workflow

Detailed technical documentation in online at read-the-docs.io

https://dna-proto-workflow-master.readthedocs.io/en/latest/

Disclaimer

This software code is made available by the IAEA for general use under the MIT licence. It
contains IAEA proprietary material and uses third-party open source code. The IAEA officer
responsible is N Warthmann. Whilst all efforts have been made to ensure the code contains
no errors, the software is provided “as is”, without warranty of any kind, either express or
implied, including, without limitation, warranties of merchantability, fitness for a particular
purpose and non-infringement. The IAEA retains the right to update and modify the code at
any time. Under no circumstances shall the IAEA be liable for any loss, damage, liability or
expense incurred or suffered that is claimed to have resulted from the use of this code,
including, without limitation, any fault, error, omission, interruption or delay with respect
thereto. The use of the code is at the User’s sole risk. Under no circumstances, including but
not limited to negligence, shall the IAEA or its affiliates be liable for any direct, indirect,
incidental, special or consequential damages, even if the IAEA has been advised of the
possibility of such damages. The User specifically acknowledges and agrees that the IAEA is
not liable for any conduct of any User. The use of particular designations of countries or
territories does not imply any judgement by the IAEA as to the legal status of such countries
or territories, of their authorities and institutions or of the delimitation of their boundaries.
The mention of names of specific companies or products (whether or not indicated as
registered) does not imply any intention to infringe proprietary rights, nor should it be
construed as an endorsement or recommendation on the part of IAEA. Unless otherwise
indicated the copyright lies with IAEA or is published under licence, or with permission from
the copyright owners.

https://github.com/pbgl/dna-proto-workflow
https://dna-proto-workflow-master.readthedocs.io/en/latest/

9

5 LITERATURE

Snakemake, introduction and documentation: https://snakemake.readthedocs.io/en/stable/

Conda, documentation: https://docs.conda.io/en/latest/, https://bioconda.github.io

Problem statement and choice of analysis tools:

• Sboner A, Mu XJ, Greenbaum D, Auerbach RK, Gerstein MB. The real cost of sequencing:
higher than you think! Genome Biology 2009 10:R88. 2011 Aug 25;12(8):125.

• Stephens ZD, Lee SY, Faghri F, Campbell RH, Zhai C, Efron MJ, et al. Big Data:
Astronomical or Genomical? PLoS Biol. 2015 Jul;13(7):e1002195.

• Yao Z, You FM, N'Diaye A, Knox RE, McCartney C, Hiebert CW, et al. Evaluation of
variant calling tools for large plant genome re-sequencing. BMC Bioinformatics. 2020 Aug
17;21(1):360.

Bibliography of the individual analysis tools:

AdapterRemoval Schubert, Lindgreen, and Orlando (2016). AdapterRemoval v2: rapid

adapter trimming, identification, and read merging. BMC Research Notes,
12;9(1):88.

kWIP Murray KD, Webers C, Ong CS, Borevitz J, Warthmann N (2017) kWIP:
The k-mer weighted inner product, a de novo estimator of genetic
similarity. PLoS Comput Biol 13(9): e1005727.

mash Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et
al. Mash: Fast Genome and Metagenome Distance Estimation Using
MinHash. Genome Biology. 2016;17:132

bwa mem Li H. (2013) Aligning sequence reads, clone sequences and assembly
contigs with BWA-MEM. arXiv:1303.3997v2

NextGenMap (ngm) Fritz J. Sedlazeck, Philipp Rescheneder, and Arndt von Haeseler.
NextGenMap: fast and accurate read mapping in highly polymorphic
genomes. Bioinformatics (2013) 29 (21): 2790-2791

abra2 Lisle E Mose, Charles M Perou, Joel S Parker. Improved indel detection in
DNA and RNA via realignment with ABRA2. Bioinformatics, 35(17),
2966–2973.

freebayes Garrison E, Marth G. Haplotype-based variant detection from short-read
sequencing. arXiv preprint arXiv:1207.3907 [q-bio.GN] 2012

samtools/bcftools Petr Danecek, James K Bonfield, Jennifer Liddle, John Marshall, Valeriu
Ohan, Martin O Pollard, Andrew Whitwham, Thomas Keane, Shane A
McCarthy, Robert M Davies, Heng Li. Twelve years of SAMtools and
BCFtools. Gigascience (2021) 10(2):giab008

SNPeff Cingolani P, Platts A, Wang le L, Coon M, Nguyen T, Wang L, Land SJ, Lu
X, Ruden DM. A program for annotating and predicting the effects of
single nucleotide polymorphisms, SnpEff: SNPs in the genome of
Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012 Apr-
Jun;6(2):80-92.

https://snakemake.readthedocs.io/en/stable/
https://docs.conda.io/en/latest/
https://bioconda.github.io/

10

6 WORKFLOW TECHNICAL DOCUMENTATION

6.1 OVERVIEW AND PREREQUISITES

This collection of Snakemake rules constitutes a workflow for the automated analysis of
high-throughput DNA sequencing data. We use it mostly for genome re-sequencing data
produced with Illumina-type sequencing instruments. The workflow is designed to run the
subsequent steps of the entire analyses automatically.

6.1.1 The (brief) Principle of the Workflow Language Snakemake

In Snakemake, analysis workflows are defined as a series of rules. In our case, rules define
the analysis steps. Each rule has input and output files. Calling a rule will invoke all
necessary upstream rules. It is hence generally sufficient to request the desired output file(s)
of the downstream most rule and the entire workflow will be executed. In practice, users will
provide input files, configure project meta information, adjust configuration parameters, and
execute snakemake . The workflow will then automatically perform all the (necessary)
analysis steps to produce the defined output.

In general, a rule will be run if:

• Snakemake realizes that the expected output files of a rule are not (yet) present, or
• Snakemake realizes that the expected input files or configuration parameters of a rule

have changed since the last run.

Hence, when analyses are re-run, existing and valid intermediate output files from a previous
run are re-used, saving precious time and resources. For details, please consult the
Snakemake documentation. For the different use cases in this workflow, invoke the rule that
produces the desired output.

6.1.2 Analysis Workflow Use Cases

For this particular workflow we distinguish two different use cases: De-novo and variant
calling .

6.1.2.1 “De-novo”
Choosing this option will conduct a reference-free comparison of samples based on the raw
sequencing reads using k-mers. The workflow invokes the software tools kWIP and/or mash
and outputs distance matrices and PCA plots. A flowchart illustrating the summarised
workflow can be found in this document under section 7.1. The workflow for this use case
consists of the following steps:

Task Rule softwares
1 Prepare/clip the raw reads readQC AdapterRemoval
2 Calculate distances denovo kWIP and/or mash
3 Perform PCA and plot denovo Utils/R-Scripts

https://snakemake.readthedocs.io/en/stable/index.html

11

• Invoke this option by running the rule: rules.denovo.input

Required input for rules.denovo.input are fastq files and the workflow will return distance
matrices between samples produced by kWIP and/or mash.

> NOTE: We recommend performing such de-novo analysis for every project. Clustering at
the level of sequencing runs can be used to confirm metadata and detect mixups.

6.1.2.2 “Variant Calling”
Choosing this option will run a full re-sequencing analysis ending in filtered bcf/vcf files. It
detects variants and genotypes in sets of samples based on the alignments of the sequencing
reads against one or several user-defined reference genome(s). Reads can be aligned with
bwa and/or NextGenMap (ngm), and variants can be called with freebayes and/or mpileup.
Between read alignments and variant calling, PCR duplicates are marked (with samtools
markdup) and indels are realigned (using abra2). If reference genome annotation is provided,
the effects of variants on gene integrity can also be predicted using the software snpEff. A
flowchart illustrating the summarised workflow can be found in this document under section
7.2.

The full workflow for this use case consists of the following steps:

Task Rules softwares
1 Prepare/clip the raw reads ReadQC AdapterRemoval
2 Align the reads to the reference genome align bwa and/or ngm
3 Mark Duplicates align samtools fixmate

samtools sort
samtools markdup

4 Realign indels align samtools merge
abra2

5 Call Variants varcall freebayes and/or mpileup
6 Filter Variants varcall bcftools view
7 Annotate Variants annotate snpEff

This option can be invoked in 2 ways:

• selecting rules.varcall.input will result in one or several vcf files, one for each
combination of sample-set, reference genome, read aligner, variant caller, and variant
filter.

• selecting the rule rules.annotate.input will result in one or several annotated vcf files
and additional summaries; running rules.annotate.input is only meaningful when a
genome annotations is available and provided in form of a snpEff database. Currently,
only one reference genome annotation can be provided at a time. Hence, invoking the
variant calling workflow through rules.annotate.input , will restrict the workflow
upstream to only one reference genome.

https://pcingola.github.io/SnpEff/se_introduction/

12

Required input files are fastq files and a genome reference sequence(s) (fasta). The rule
snpeff in addition depends on a genome annotation in form of a snpEff database matching the
reference genome. For maximum flexibility and ease of troubleshooting we recommend to
first run the re-sequencing analysis by invoking rules.varcall.input , and upon successful
completion invoke the workflow again, this time selecting/uncommenting rules.annotate.input .

6.1.2.3 “Annotate”
Choosing the option rules.annotate.input will annotate bcf/vcf files found in
output/variants/final/ and write annotated vcf.gz files to output/variants_annotated/. This
analysis has only one step:

Task Rules softwares
1 Annotate Variants annotate snpEff

Typically, rules.annotate.input is run after a completed run of rules.varcall.input . A snpEff run
will complete within a matter of minutes. It will run on files specified through entries in the
snpeff section of the config.yml file:

• config['snpeff']['ref'] one chosen reference genome,
• config['snpeff']['database'] one corresponding snpEff database,
• and one or several of ['samplesets'] , ['aligners'] , ['callers'] , and ['filters']

that together specify the files to annotate.

6.1.3 Hardware Requirements

The workflow is parallelised and Snakemake will make efficient use of available resources
on local machines as well as on compute clusters. It will run faster the more resources are
available, but it performs fine on smaller machines. For routine applications we have used the
workflow on a budged workstation, HP Z820 with 32 cores, 64 GB RAM running Ubuntu
16.04, and on a Virtual Machine in the cloud, AZURE with 16 cores and 512 GB RAM
running Ubuntu 18.04.

Snakemake allows for fine-tuning resource allocation to the individual rules, i.e., number of
processors and memory. We configured each rule with reasonable defaults, but they can be
tailored to your particular size project and hardware. For details please consult the
Snakemake documentation. In general though, if limited by memory, do not parallelise too
aggressively.

6.1.4 Software Dependencies

We recommend running the workflow in its own conda environment on a Linux Server.
Dependencies are listed in envs/condaenv.yml and envs/additional.yml . A brief explanation how
to use these files to generate the conda environment is further below. For comprehensive

https://snakemake.readthedocs.io/en/stable/index.html

13

explanation please consult the conda documentation. For software that is not available
through conda on some important platforms we make the specific binaries available in envs/ ;
currently mainly abra2.jar.

6.2 WORKFLOW USE CHECKLIST

Steps:

1. Create a new github repository in your github account using this workflow as a
template

2. Clone your newly created repository to your local system where you want to perform
the analysis

3. Create and activate the conda environment
4. Provide reference genome(s) and annotation(s) in /genomes and annotation/
5. Specify the locations of input files and their meta data in /metadata/sample2runlib.csv
6. Provide lists of samples as sets to analyse in metadata/samplesets/
7. Uncomment the respective workflow option for your use case in the Snakefile
8. Configure software parameters in config.yml
9. Adapt snpeff.config (Optional in case the snpeff rule will be called)
10. Run snakemake

For standard applications no additional edits are necessary. The rules reside in rules/*.smk .
Most rules have explicit shell commands with transparent flag settings. Expert users can
change these for additional control.

6.3 WORKFLOW USE IN DETAIL

We recommend using Linux, managing the software dependencies trough conda/mamba and
running the workflow in a dedicated conda virtual environment. The virtual environment is
created, activated, and then all software will be available.

6.3.1 Creating the Virtual Environment (conda)

The preferred way to create the environment is with mamba . The code below will install

mamba (if not already available), create a virtual environment named “dna-proto”, and
activate it. If you are new to conda then please consult the conda documentation to get
started.

$ conda install mamba
$ mamba env create --file env/all-dependencies.yml
$ conda activate dna-proto

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/creating-a-repository-from-a-template
https://help.github.com/en/articles/cloning-a-repository
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

14

Alternatively (and only if the above doesn’t work as intended), create the empty environment
and then conda install (or mamda install) the individual programs manually. They are listed in
env/all-dependencies.yml. Specify the correct channel and software version where required.
Below we give an example, but please consult the conda (and bioconda) documentation.

Example:

$ conda create -- name dna-proto
$ conda install -c bioconda samtools=1.9
Etc.

In case of manual installs, it is convenient to add all required channels to the conda config .
You will need below channels:

$ conda config --show channels
channels:
 - defaults
 - bioconda
 - conda-forge
 - r
$ conda config --add channels bioconda
$ conda install samtools=1.9

The required channels are listed in the respective *.yml files. Configuring channels has the
pitfall of rare ambiguities and collisions. Please consult the conda documentation for
“managing channels”.

Once set up, don’t forget to activate your conda environment:

$ conda activate dna-proto

6.3.2 Reference Genome

The workflow will look for the reference genome(s) and its associated files in
genomes_and_annotations/ . We provide an example directory tree in
genomes_annotations/readme . We recommend creating a separate directory for each reference
genome. They can be softlinks. Each reference genome directory must contain the necessary
assembly file (.fa or .fna) and the associated files required by the aligners. Generate those
files in this directory from the assembly file (fasta: .fa or .fna) like so:

$ samtools faidx <reference-genome.fa>
$ bwa index -a bwtsw <reference-genome.fa>
$ ngm -r <reference-genome.fa>

directory tree of the reference genome directory once fully prepared

~/genomes_and_annotations/
├── GCF_004118075.1_ASM411807v1
 ├── GCF_004118075.1_ASM411807v1_genomic.fna
 ├── GCF_004118075.1_ASM411807v1_genomic.fna.amb

https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html
https://bioconda.github.io/
https://docs.conda.io/projects/conda/en/latest/user-guide/getting-started.html

15

 ├── GCF_004118075.1_ASM411807v1_genomic.fna.ann
 ├── GCF_004118075.1_ASM411807v1_genomic.fna.bwt
 ├── GCF_004118075.1_ASM411807v1_genomic.fna-enc.2.ngm
 ├── GCF_004118075.1_ASM411807v1_genomic.fna.fai
 ├── GCF_004118075.1_ASM411807v1_genomic.fna-ht-13-2.3.ngm
 ├── GCF_004118075.1_ASM411807v1_genomic.fna.pac
 └── GCF_004118075.1_ASM411807v1_genomic.fna.sa

6.3.3 Reference Genome Annotation

In order to annotate variant effects using snpEff you will need a snpEff database
(snpEffectPredictor.bin) for the relevant reference genome. The location of the snpeff database
is configured in snpeff.config . It is currently set to genomes_and_annotations/snpeffdata/ and
again, we recommend separate subdirectories for the reference genomes also in this directory.
Appending “_snpeff” to these directory names will help avoid confusion. In order to create a
snpeff database, this <reference_genome>_snpeff directory must contain the reference genome
and the annotation in files named sequences.fa and genes.gff ; they again can be soft links.
(See genomes_and_annotations/snpeffdata/readme .) For building the database you will need to
add the respective entry in snpeff.config and then, from the root directory of the workflow (the
directory that contains the snpeff.config file), execute:

$ snpEff build –gff3 genomes_and_annotations/snpeffdata/<reference-genome>_snpeff

While a .gtf file can also be used (-gtf 22), we have better experience building databases
from .gff files. For a detailed explanation of the snpeff build process please consult the
snpEff documentation.

Below is an example directory tree of genomes_and_annotations/ for a cowpea reference
genome downloaded from NCBI. Notice that we store the reference genomes elsewhere and
use soft links. Compare also to our entries in snpeff.config under “Non-standard Databases”
and replicate accordingly. The database snpEffectPredictor.bin will be generated by snpEff build .

genomes_and_annotations/
├── GCF_004118075.1_ASM411807v1 -> ~/genomes/Cowpea/
├── readme
└── snpeffdata
 └── GCF_004118075.1_ASM411807v1_snpeff
 ├── genes.gff -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_genomic.gff
 ├── genes.gtf -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_genomic.gtf
 ├── protein.fa -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_protein.faa
 ├── sequences.fa -> ~/genomes/Cowpea/GCF_004118075.1_ASM411807v1_genomic.fna
 └── snpEffectPredictor.bin

https://pcingola.github.io/SnpEff/se_introduction/

16

6.3.4 Providing Required Meta Information

6.3.4.1 Samplesets
We use the term sample as the entity of interest. Our workflows call variants on samples
within one set. Lists of sample names must be provided as text file (.txt) in
/metadata/samplesets/ . Each file defines a set. The samplesets: in config.yml refer to those files
and must match the filenames. We implemented a glob: all_samples, which will have the
effect of concatenating all *.txt files in /metadata/samplesets/ into an additional set comprising
all samples across all sets. The intention is to enable easy addition or removal of samples
to/from an existing analysis.

6.3.4.2 Sample Definitions
In practice, the unit of interest oftentimes is the individual (plant). DNA is extracted from an
individual and turned into one or several sequencing libraries that are then sequenced in one
or several sequencing runs. In order to compare individuals all respective fastq files need to
be assigned to the same sample. For our workflow, the run - library - sample relationships
need to be defined in /metadata/sample2runlib.csv making explicit which fastq files constitute
the samples. The entries in columns run and library are together used as the primary key for
the sequencing run and thus the fastq file(s). The user must make sure that any run – library
combination is unique. Sequencing runs are assigned to the same sample through an
identical entry in the sample column. fastq files can be provided either as separate forward
and reverse read files (fq1, fq2) or as interleaved fastq (il_fq), with the respective other
column(s) empty. Within one sample2runlib.csv file interleaved, and two-file input can be
mixed.

Example sample2runlib.csv file:

run Library sample fq_1 fq_2 il_fq
Run1 A-500bp A <path to file> <path to file>
Run1 A-300bp A <path to file> <path to file>
Run2 A-500bp A <path to file> <path to file>
Run2 B-300b p B <path to file>
Run2 B-500bp B <path to file>
Run1 C-500bp C <path to file> <path to file>

6.3.4.3 Regions of Interest for Variant Calling
Variant calling can be restricted to particular regions of interest through
metadata/contigs_of_interest.bed : A file in bed file format listing identifier, start-, and end-
positions (tab delimited, no header). This is helpful for exome capture data but also to restrict
the analysis to specific chromosomes. Genome assemblies often contain the main
chromosomes and in addition many orphan fragments that often are not of interest. Below
example will restrict variant calling to the 11 chromosomes plus the chloroplast of cowpea.
The hundreds of additional contigs in the cowpea reference genome are available for read

17

mapping, but variants will not be called for them and their variants will subsequently not be
present in the bcf/vcf files. Note that lines starting with ‘#’ will be disregarded.

Example contigs_of_interest.bed file:

NC_040279.1 0 42129361
NC_040280.1 0 33908088
NC_040281.1 0 65292630
NC_040282.1 0 42731077
NC_040283.1 0 48746289
NC_040284.1 0 34463471
NC_040285.1 0 40876636
NC_040286.1 0 38363498
NC_040287.1 0 43933251
NC_040288.1 0 41327797
NC_040289.1 0 41684185
NC_018051.1 0 152415

6.3.5 Workflow Configuration

6.3.5.1 config.yml
Central place for the user to configure the workflow behaviour and software parameters is
config.yml . There are comments in the file that explain the configuration parameters and
options.

In Snakemake, calling a rule will trigger running of the upstream rules. When editing
(/config.yml) it is important to only configure the intended most downstream rule (varcall: ,
annotate: , or denovo:). These settings will be propagated upstream. qc: is independent and
will require editing, particularly the _DEFAULT_ adaptors used. The standard adaptors for
Truseq- and Nextera-Libraries are given for reference, paste under _DEFAULT_ as required.

An important configuration parameter is the location of a suitable temporary directory
(“tmp/”). Several rules make extensive use of the “tmp/” directory to temporarily store large
files. Oftentimes, standard home directories on compute servers or cluster nodes are too
small. Central place for the configuration of the “tmp/” directory is currently under the abra2
configuration options (abra2:temp:).

6.3.5.2 Additional Configuration
Expert users can change the rules themselves by editing rules/*.rules.smk . Use caution! We
have chosen reasonable default settings and recommend modifying rules only when you
know what you are doing. When allocating more cores to rules, pay attention that some rules
are very memory intensive and some shell commands are piped and are in fact using more
than 1 core per process.

18

6.3.6 Running the Workflow

To run the workflow, un-comment the respective rule for the desired use case in the Snakefile
and run snakemake .

$ snakemake –npr
$ snakemake –j 6 --no-temp -kpr

For details on command line options for snakemake please consult the Snakemake
documentation. Un-comment only the one most downstream rule for your use case.
Currently, these use case rules are:

USER OPTIONS
rules.denovo.input,
rules.varcall.input,
rules.annotate.input,

A rule that encounters missing input files will invoke the respective upstream rule(s). E.g.,
when rules.annotate.input is uncommented and snakemake is run for the first time, the entire
workflow from readqc (= adapter and quality clipping), align (= read alignments, duplicate
marking, indel realignment), varcall (= variant calling), and annotate (= variant functional
annotation) will run in one go. In case no snpeff database is supplied, then rule
rules.annotate.input cannot be run. Use rules.varcall.input instead.

When configuring config.yml , keep in mind that configuration parameters of a downstream
rule take precedence because parameters have to propagate upstream. I.e., When running
varcall , the user must set the alignment parameters in the varcall: section; same for the
annotate: parameters; they must be set under snpeff: .

> Note: Adjusting presumed upstream parameters e.g., under align: will not have the intended
effect. Only in special circumstances will the rules.align.input be run by itself and only then
will you have to adjust parameters in the align: section.

The workflow runs on samples in sets as listed in samplesets/*.txt and defined in
/metadata/sample2runlib.csv . Sample names listed in samplesets/*.txt must correspond to the
entries in the sample column in /metadata/sample2runlib.csv .

6.3.7 Configuring the Workflow Use Case

6.3.7.1 De-novo Analysis
Option denovo can be used to check the relatedness of sequencing runs and/or samples
without the use of any reference genome. It will perform a comparative analysis based on k-

https://snakemake.readthedocs.io/en/stable/index.html

19

mers on the raw data and output distance matrices. We recommend performing a de-novo
analysis at the very start of every project at the “sequencing run”-level prior to any merging
of runs into samples. This can help to detect mix-ups and mislabels. Run-level clustering is
achieved by providing unique names for each sequencing run in the sample column of
metadata/sample2runlib.csv . De-novo analysis is invoked by calling rules.denovo.input
(Uncomment the respective line in the Snakefile , and only this line). Pay attention to maintain
the correct indentation.

rule all:
 input:
USER OPTIONS
 rules.denovo.input,
rules.varcall.input,
rules.annotate.input,
EXPERT OPTIONS
rules.readqc.input,
rules.align.input,
rules.stats.input,

6.3.7.2 Variant Calling – Standard Re-Sequencing Analysis
Running rules.varcall.input will call variants and genotype samples with respect to one or
several reference genomes. varcall will compare samples listed in metadata/samplesets/ with
one another, as defined in the sample column. Invoke this analysis by uncommenting
rules.varcall.input (and only this line). Pay attention to maintain the correct indentation.

rule all:
 input:
USER OPTIONS
rules.denovo.input,
 rules.varcall.input,
rules.annotate.input,
EXPERT OPTIONS
rules.readqc.input,
rules.align.input,
rules.stats.input,

6.3.7.3 Variant Annotation – The Effects of Variants on Gene Function
If a snpEff library for this (exact) reference genome is provided then the entire workflow can
in principle be invoke by uncommenting rules.annotate.input (and only this line). Pay attention
to maintain the correct indentation.

rule all:
 input:
USER OPTIONS
rules.denovo.input,
rules.varcall.input,
 rules.annotate.input,

20

EXPERT OPTIONS
rules.readqc.input,
rules.align.input,
rules.stats.input,

Currently, rules.annotate.input will operate only on one reference genome at a time. The rule
will hence propagate upstream only one reference genome as requirement. If variants
detected against several different reference genomes need annotating, then first run the
varcall rule specifying all reference genomes and subsequently invoke the annotate rule
separately for each reference genome annotation.

6.3.7.4 Expert Options
In cases where only adapter clipping or read alignment is desired, those processes can be
invoked separately by the respective rules, rules.readqc.input or rules.align.input . There are
separate configurations sections for those in config.yml which must be used. Alignment will
trigger prior adaptor clipping. Invoking rules.stats.input will produce summary statistics. They
will require read alignments and are meaningful for generic varcall runs.

6.4 WORKFLOW OUTPUTS

After completion, all output of the workflow, including logs and stats, will be in output/ .

• Clipped reads (in interleaved fastq) format are in output/reads/
• BAM files with In/Del-realigned alignments are in output/abra/
• BCF/VCF files of the filtered variants including respective index files are in

output/variants/final/
• The snpEff-annotated variant file is in output/annotated_variants/snpeff/

VCF files in output/variants/final/ have been filtered with bcftools view according to the user
defined filter settings in config.yml .

For loading into IGV, use the In/Del realigned BAM file in output/abra/ and the *.vcf.gz files
of the filtered variants. Note that IGV requires the vcf.gz.tbi index.

21

6.5 SUPPORT

6.5.1 License

The snakemake workflow dna-proto-workflow is released under the MIT License.

6.5.2 Contributors

This workflow was developed by Norman Warthmann, Plant Breeding and Genetics
Laboratory of the FAO/IAEA Joint Division (PBGL), with important contributions from
Kevin D Murray (Australian National University) and Marcos Conde, PBGL. The
documentation was written by Norman Warthmann with contributions from Anibal Morales,
PBGL.

6.5.3 Citing

When publishing results obtained using this workflow please cite the link to the original
github repository (https://github.com/pbgl/dna-proto-workflow) specifying the release.

6.5.4 Reproducibility

Workflows help addressing reproducibility issues. Consider making your version of the
workflow, configured for your data, available upon publication of your results. Check out the
archive options of Snakemake.

6.5.5 Getting Help

Feel free to let us know if you are using our workflow and don’t hesitate to contact us with
questions: email n.warthmann@iaea.org

https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html#sustainable-and-reproducible-archiving
mailto:n.warthmann@iaea.org

22

7 WORKFLOW ILLUSTRATIONS (GRAPHICS)

7.1 DENOVO WORKFLOW

23

7.2 VARCALL WORKFLOW

	1 Executive Summary
	2 Background
	3 Workflow Implementation
	4 Availability of the workflow and DOCUMENTATION
	5 Literature
	6 Workflow Technical documentation
	6.1 Overview and Prerequisites
	6.1.1 The (brief) Principle of the Workflow Language Snakemake
	6.1.2 Analysis Workflow Use Cases
	6.1.2.1 “De-novo”
	6.1.2.2 “Variant Calling”
	6.1.2.3 “Annotate”

	6.1.3 Hardware Requirements
	6.1.4 Software Dependencies

	6.2 Workflow use Checklist
	6.3 Workflow use in detail
	6.3.1 Creating the Virtual Environment (conda)
	6.3.2 Reference Genome
	6.3.3 Reference Genome Annotation
	6.3.4 Providing Required Meta Information
	6.3.4.1 Samplesets
	6.3.4.2 Sample Definitions
	6.3.4.3 Regions of Interest for Variant Calling

	6.3.5 Workflow Configuration
	6.3.5.1 config.yml
	6.3.5.2 Additional Configuration

	6.3.6 Running the Workflow
	6.3.7 Configuring the Workflow Use Case
	6.3.7.1 De-novo Analysis
	6.3.7.2 Variant Calling – Standard Re-Sequencing Analysis
	6.3.7.3 Variant Annotation – The Effects of Variants on Gene Function
	6.3.7.4 Expert Options

	6.4 Workflow Outputs
	6.5 Support
	6.5.1 License
	6.5.2 Contributors
	6.5.3 Citing
	6.5.4 Reproducibility
	6.5.5 Getting Help

	7 workflow Illustrations (GRAPHICS)
	7.1 Denovo Workflow
	7.2 Varcall Workflow

