

Circular Informativa

INFCIRC/254/Rev.11/Part 1a

12 de diciembre de 2012

Distribución general

Español Original: Inglés

Comunicación recibida de la Misión Permanente de los Estados Unidos de América ante el Organismo Internacional de Energía Atómica relativa a las directrices de ciertos Estados Miembros para la exportación de materiales, equipos y tecnología nucleares

- 1. La Secretaría ha recibido una nota verbal de la Misión Permanente de los Estados Unidos de América, de fecha 12 de octubre de 2012, en la que solicita al Organismo que distribuya a todos los Estados Miembros una carta de 5 de septiembre de 2012 enviada al Director General por el Presidente del Grupo de Suministradores Nucleares, el Sr. Richard J.K. Stratford, en nombre de los Gobiernos de Alemania, Argentina, Australia, Austria, Belarús, Bélgica, Brasil, Bulgaria, Canadá, China, Chipre, Croacia, Dinamarca, Eslovaquia, Eslovenia, España, Estados Unidos de América, Estonia, Federación de Rusia, Finlandia, Francia, Grecia, Hungría, Irlanda, Islandia, Italia, Japón, Kazajstán, Letonia, Lituania, Luxemburgo, Malta, Noruega, Nueva Zelandia, Países Bajos, Polonia, Portugal, Reino Unido de Gran Bretaña e Irlanda del Norte, República Checa, República de Corea, Rumania, Sudáfrica, Suecia, Suiza, Turquía y Ucrania^b, por la que se proporciona más información sobre las Directrices de esos Gobiernos para las transferencias nucleares.
- 2. Atendiendo al deseo expresado en la nota verbal antes mencionada, en el presente documento se reproducen, para información de todos los Estados Miembros, el texto de esa nota verbal, así como la carta adjunta y sus anexos.

^a El documento INFCIRC/254/Part 2, enmendado, contiene las directrices para las transferencias de equipos, materiales y programas informáticos (software) de doble uso del ámbito nuclear y tecnología relacionada.

^b La Comisión Europea y el Presidente del Comité Zangger participan como observadores.

MISIÓN DE LOS ESTADOS UNIDOS DE AMÉRICA ANTE LAS ORGANIZACIONES INTERNACIONALES CON SEDE EN VIENA

NOTA DIPLOMÁTICA

23/2012

La Misión Permanente de los Estados Unidos de América ante el Organismo Internacional de Energía Atómica saluda al Director General del OIEA y tiene el honor de remitirle una carta enviada al Director General, de fecha 5 de septiembre de 2012, por el Sr. Richard J.K. Stratford, Director de Energía y Seguridad Nucleares, Departamento de Estado de los Estados Unidos, actual Presidente del GSN, sobre las enmiendas acordadas del documento INFCIRC/254/Part 1 (Parte 1 de las Directrices del GSN).

La Misión Permanente de los Estados Unidos de América tiene el honor de solicitar que el documento INFCIRC/254 enmendado y un cuadro de cambios comparativo, junto con la carta del Sr. Stratford, se distribuyan a los Estados Miembros del OIEA.

La Misión Permanente de los Estados Unidos de América ante las Organizaciones Internacionales con sede en Viena aprovecha esta oportunidad para reiterar al Director General del OIEA la seguridad de su distinguida consideración.

[Sello]

12 de octubre de 2012

PRESIDENTE DEL GRUPO DE SUMINISTRADORES NUCLEARES

Oficina de Energía y Seguridad Nucleares Oficina de Seguridad Internacional y No Proliferación Departamento de Estado de los Estados Unidos Washington, DC Estados Unidos de América

5 de septiembre de 2012

En nombre de los Gobiernos de Alemania, Argentina, Australia, Australia, Belarús, Bélgica, Brasil, Bulgaria, Canadá, China, Chipre, Croacia, Dinamarca, Eslovaquia, Eslovenia, España, Estados Unidos de América, Estonia, Federación de Rusia, Finlandia, Francia, Grecia, Hungría, Irlanda, Islandia, Italia, Japón, Kazajstán, Letonia, Lituania, Luxemburgo, Malta, Noruega, Nueva Zelandia, Países Bajos, Polonia, Portugal, Reino Unido, República Checa, República de Corea, Rumania, Sudáfrica, Suecia, Suiza, Turquía y Ucrania, tengo el honor de hacer referencia a todas las comunicaciones pertinentes anteriores de estos Gobiernos relativas a sus decisiones de actuar de acuerdo con las Directrices para las transferencias nucleares actualmente publicadas como documento INFCIRC/254/Rev.10/Part 1, incluidos sus anexos.

Esos Gobiernos han decidido añadir a la sección sobre Actividades Auxiliares de la Parte 1 de las Directrices del GSN, un nuevo párrafo 12 titulado "Apoyo para acceder a materiales nucleares con fines pacíficos". El nuevo texto reza como sigue:

PRINCIPIO DEL TEXTO:

12. Apoyo para acceder a materiales nucleares con fines pacíficos

Los suministradores, de conformidad con los objetivos de las presentes directrices, facilitarán el acceso a materiales nucleares para la utilización de la energía nuclear con fines pacíficos, y alentarán, en el marco del artículo IV del TNP, a los receptores a recurrir en la mayor medida posible al mercado comercial internacional y a otros mecanismos internacionales disponibles para obtener servicios relacionados con el combustible nuclear sin perjudicar el mercado mundial del combustible.

FIN DEL TEXTO

En aras de la claridad, se reproduce en el apéndice el texto completo de las Directrices y sus Anexos modificados, así como un "Cuadro comparativo de los cambios efectuados en las Directrices para las transferencias nucleares".

Los Gobiernos antes mencionados han decidido actuar de acuerdo con las Directrices así revisadas y aplicarlas de conformidad con sus respectivas legislaciones nacionales.

Al adoptar esta decisión, estos Gobiernos son plenamente conscientes de la necesidad de favorecer el desarrollo económico, evitando a la vez contribuir en la forma que fuere a la proliferación de las armas nucleares u otros dispositivos nucleares explosivos o a su desviación a actos de terrorismo nuclear, así como de la necesidad de distinguir entre la cuestión de las garantías de no proliferación o no desviación y la de la competencia comercial.

¹ La Comisión Europea y el Presidente del Comité Zangger participan como observadores.

En lo que respecta al comercio dentro de la Unión Europea, los Gobiernos de los Estados Miembros de la Unión Europea aplicarán esta decisión teniendo en cuenta sus compromisos como Estados Miembros de la Unión.

Agradecería que pusiera en conocimiento de todos los Estados Miembros del OIEA el texto de la presente nota y su apéndice como documento INFCIRC/254/Rev.11/Part 1.

En nombre de los Gobiernos de los Estados antes mencionados, aprovecho esta oportunidad para reiterarle la seguridad de su más alta consideración.

Le ruego acepte el testimonio de mi distinguida consideración.

[Firmado]

Richard J. K. Stratford Presidente del Grupo de Suministradores Nucleares

Al Sr. Yukiya Amano Director General OIEA

DIRECTRICES PARA LAS TRANSFERENCIAS NUCLEARES

1. A continuación se exponen los principios fundamentales relativos a salvaguardias y controles de exportación que deberán aplicarse a las transferencias nucleares con fines pacíficos a cualquier Estado no poseedor de armas nucleares y, en el caso de los controles sobre las retransferencias, a las transferencias a cualquier Estado. A este respecto, los suministradores han establecido una lista inicial de exportaciones.

Prohibición de explosivos nucleares

2. Los suministradores autorizarán la transferencia de los artículos o tecnología relacionada indicados en la lista inicial únicamente cuando reciban garantías formales de los gobiernos receptores que excluyan explícitamente las aplicaciones cuyo resultado sea un dispositivo nuclear explosivo.

Protección física

- 3. a) Todas las instalaciones y materiales nucleares indicados en la lista inicial que deberán someterse a medidas eficaces de protección física para impedir su empleo y manipulación no autorizados. Los suministradores han fijado de mutuo acuerdo, y teniendo en cuenta las recomendaciones internacionales, los grados de protección física que han de observarse según la clase de materiales, equipo e instalaciones de que se trate.
 - b) La responsabilidad de la aplicación de las medidas de protección física en el país receptor recae en el Gobierno de dicho país. Sin embargo, a fin de dar cumplimiento a lo acordado entre los suministradores, los grados de protección física en que deberán basarse estas medidas serán objeto de un acuerdo entre suministrador y receptor.
 - c) Se adoptarán disposiciones especiales en cada caso para definir claramente las responsabilidades en relación con el transporte de los artículos indicados en la lista inicial.

Salvaguardias

- 4. a) Los suministradores transferirán los artículos o tecnología relacionada indicados en la lista inicial a un Estado no poseedor de armas nucleares solamente cuando el Estado receptor haya puesto en vigor un acuerdo con el OIEA que estipule la aplicación de salvaguardias a todos los materiales básicos y materiales fisionables especiales en sus actividades actuales y futuras con fines pacíficos. Los suministradores autorizarán tales transferencias únicamente cuando reciban garantías formales del Gobierno del país receptor de que:
 - en caso de cesar el acuerdo antes mencionado, el receptor pondrá en vigor un acuerdo con el OIEA basado en los acuerdos de salvaguardias modelo del OIEA vigentes que estipulan la aplicación de salvaguardias a todos los artículos o tecnología relacionada de la lista inicial transferidos por el suministrador o procesados, producidos o utilizados en relación con tales transferencias; y
 - en caso de que el OIEA decida que ya no es posible aplicar las salvaguardias del OIEA, el suministrador y el receptor deberán elaborar medidas de verificación apropiadas. De no aceptar estas medidas, el receptor deberá permitir, a petición del suministrador, la restitución de los artículos de la lista inicial transferidos y obtenidos.

- b) Las transferencias objeto del apartado a) del presente párrafo a un Estado no poseedor de armas nucleares sin dicho acuerdo de salvaguardias se autorizarán solamente en casos excepcionales cuando se consideren esenciales para el funcionamiento seguro de instalaciones existentes y cuando se apliquen salvaguardias a dichas instalaciones. Los suministradores informarán y, si procede, consultarán en caso de que tengan el propósito de autorizar o de negar dichas transferencias.
 - c) La política a que se hace referencia en los apartados a) y b) del presente párrafo no es de aplicación a acuerdos o contratos concertados hasta el 3 de abril de 1992, inclusive. En el caso de países que se han adherido o se adherirán al INFCIRC/254/Rev. 1/Part 1 con posterioridad al 3 de abril de 1992, la política sólo se aplica a los acuerdos concertados después de su fecha de adhesión.
 - d) En el caso de acuerdos a los que no es de aplicación la política a que se hace referencia en el apartado a) del presente párrafo (véanse los apartados b) y c) del presente párrafo), los suministradores transferirán artículos o tecnología relacionada indicados en la lista inicial solamente cuando estén sometidos a las salvaguardias del OIEA con disposiciones de duración y cobertura de conformidad con el documento GOV/1621 del OIEA. No obstante, los suministradores se comprometen a esforzarse para que se aplique lo antes posible la política a que se hace referencia en el apartado a) de este párrafo en el marco de dichos acuerdos.
 - e) Los suministradores se reservan el derecho de aplicar condiciones adicionales de suministro como cuestión de política nacional.
- 5. Los suministradores reconsiderarán conjuntamente sus requisitos comunes de salvaguardias, cuando proceda.

Controles especiales sobre exportaciones de carácter delicado

- 6. Los suministradores adoptarán una política de moderación en la transferencia de instalaciones, equipo y tecnología sensibles, así como de materiales utilizables para la fabricación de armas o de otros dispositivos nucleares explosivos, en particular cuando un Estado tenga en su territorio entidades que sean objeto de las notificaciones de denegación activas previstas en las Directrices Part 2 del GSN por parte de más de un gobierno participante en el GSN.
 - a) En el contexto de esta política, los suministradores no autorizarán la transferencia de instalaciones de enriquecimiento y reprocesamiento ni el equipo y la tecnología correspondientes si el destinatario no cumple al menos la totalidad de los criterios siguientes:
 - i) ser Parte en el Tratado sobre la no proliferación de las armas nucleares y cumplir plenamente las obligaciones que le corresponden en virtud del mismo;
 - no haberse determinado en un informe de la Secretaría del OIEA que esté siendo examinado por la Junta de Gobernadores del Organismo como autor de una infracción de sus obligaciones con arreglo a su acuerdo de salvaguardias ni seguir siendo objeto de decisiones de la Junta de Gobernadores que lo insten a adoptar medidas adicionales para cumplir sus obligaciones en materia de salvaguardias o a generar confianza en cuanto al carácter pacífico de su programa nuclear ni haber sido designado por la Secretaría del OIEA como un Estado en el que el OIEA no puede actualmente aplicar su acuerdo de salvaguardias. Este criterio no se aplicará en aquellos casos en los que la Junta de Gobernadores del OIEA o el Consejo de Seguridad de las Naciones Unidas decidan posteriormente que existen garantías suficientes en cuanto a las finalidades pacíficas del programa nuclear del destinatario y su cumplimiento de sus obligaciones

- en materia de salvaguardias. A los efectos del presente párrafo, por "infracción" se entiende únicamente las infracciones graves de interés desde el punto de vista de la proliferación;
- iii) respetar las directrices del GSN y haber comunicado al Consejo de Seguridad de las Naciones Unidas que aplica los controles efectivos de exportación estipulados por la Resolución 1540 del Consejo de Seguridad;
- iv) haber concluido un acuerdo intergubernamental con el suministrador con garantías de un uso no explosivo, salvaguardias efectivas a perpetuidad y retransferencia;
- v) haber contraído con el suministrador el compromiso de aplicar normas de protección física, aceptadas de común acuerdo, basadas en las directrices internacionales vigentes; y
- vi) haberse comprometido con las normas de seguridad del OIEA y adherirse a las convenciones internacionales aceptadas en materia de seguridad.
- b) Al considerar si autorizan esas transferencias, los suministradores, al mismo tiempo que tienen en cuenta los párrafos 4(e), 6(a) y 10, deberán consultar con los destinatarios potenciales para asegurarse de que las instalaciones, el equipo y la tecnología de enriquecimiento y procesamiento están destinados exclusivamente a fines pacíficos, tomando también en consideración, a su discreción nacional, cualquier factor pertinente que pueda ser aplicable.
- c) Los suministradores realizarán esfuerzos especiales en apoyo de la aplicación efectiva de las salvaguardias del OIEA a las instalaciones, el equipo o la tecnología de enriquecimiento o reprocesamiento y, de conformidad con los párrafos 4 y 13 de las Directrices, se asegurarán de su índole pacífica. A este respecto, los suministradores, de acuerdo con este párrafo, sólo deberán autorizar transferencias cuando el destinatario haya puesto en vigor un acuerdo de salvaguardias amplias y un protocolo adicional basado en el modelo de protocolo adicional o, en espera de ello, esté aplicando los correspondientes acuerdos de salvaguardias en cooperación con el OIEA, comprendida una disposición regional de contabilidad y control de materiales nucleares aprobada por la Junta de Gobernadores del OIEA.
- d) De conformidad con el párrafo 16 b) de las Directrices, los suministradores, antes de iniciar transferencias de instalaciones, equipo o tecnología de enriquecimiento o reprocesamiento, deberán consultar con los gobiernos participantes acerca de los términos y las condiciones aplicables a la transferencia en relación con la no proliferación.
- e) Cuando hayan de transferirse instalaciones, equipo o tecnología para el enriquecimiento o el reprocesamiento, los suministradores alentarán a los receptores a aceptar, como alternativa a las plantas nacionales, la participación del suministrador y/u otra participación multinacional apropiada en las instalaciones resultantes. Los suministradores fomentarán también actividades internacionales (incluidas las del OIEA) relativas a los centros regionales multinacionales del ciclo del combustible.

Disposiciones especiales para la exportación de instalaciones, equipo y tecnología de enriquecimiento

- 7. Todos los Estados que cumplan los criterios expuestos en el párrafo 6 *supra* podrán ser destinatarios de transferencias de instalaciones, equipo y tecnologías de enriquecimiento. Los suministradores reconocen que la aplicación de las disposiciones especiales ha de ser coherente con los principios del TNP, en particular su artículo IV.La aplicación por parte de los suministradores de las siguientes disposiciones especiales no podrá derogar los derechos de los Estados que cumplan los criterios expuestos en el párrafo 6.
 - a) Para la transferencia de una instalación de enriquecimiento, o bien el equipo o la tecnología correspondientes, los suministradores deberán tratar de obtener un compromiso jurídicamente vinculante por parte del Estado destinatario de que ni la instalación transferida ni ninguna instalación en la que se incorpore ese equipo o se base en esa tecnología serán modificadas o explotadas para la producción de uranio enriquecido en más del 20%. Los suministradores deberán procurar diseñar y construir una instalación de enriquecimiento o el equipo correspondiente de modo que quede excluida hasta donde sea factible la posibilidad de producir uranio enriquecido en más del 20%.
 - b) Para la transferencia de una instalación de enriquecimiento o de equipo basado en una determinada tecnología de enriquecimiento de los que se haya demostrado que producen uranio enriquecido en una escala importante al 31 de diciembre de 2008, los suministradores deberán:
 - 1) evitar en la medida de lo posible la transferencia de diseño habilitante y tecnología de fabricación asociada con esos elementos; y
 - 2) tratar de obtener de los destinatarios un acuerdo apropiado para que acepten equipo de enriquecimiento de carácter delicado y tecnologías habilitantes o una instalación de enriquecimiento operable en condiciones que no permitan la replicación de las instalaciones.

La información exigida con fines reguladores o para garantizar el establecimiento y funcionamiento seguros de una instalación debe compartirse en la medida en que sea necesario, sin divulgar tecnologías habilitantes.

c) Los participantes, tanto a título individual como conjuntamente, podrán crear empresas cooperativas de enriquecimiento basado en una tecnología de enriquecimiento particular de la que no se haya demostrado que produce uranio enriquecido en una escala importante al 31 de diciembre de 2008, y toda transferencia de las instalaciones o el equipo resultantes estarán sometidas a lo dispuesto en el párrafo 7 b) a más tardar antes de la utilización de un prototipo. Para los fines del párrafo 7 c) de las Directrices, un prototipo es un sistema o una instalación explotados para generar información técnica que confirme el potencial o la viabilidad técnicos del proceso de separación para la separación en gran escala de isótopos del uranio.

Los suministradores podrán proponer disposiciones alternativas relacionadas con el control de las transferencias de nueva tecnología de enriquecimiento para facilitar la cooperación en tecnología de enriquecimiento. Esas disposiciones tendrían que ser equivalentes a las indicadas en el párrafo 7 b), y será preciso consultar al respecto al GSN. Los gobiernos participantes examinarán las disposiciones relativas a la exportación de instalaciones, equipo y tecnología de enriquecimiento cada cinco años a partir de 2013 con objeto de tomar en cuenta los cambios experimentados por la tecnología de enriquecimiento y las prácticas comerciales.

- d) Los suministradores reconocen que en la aplicación de las disposiciones previstas en el párrafo 7 en relación con las empresas cooperativas de enriquecimiento nuevas y ya existentes, los asociados de esas empresas podrán poseer, compartir y transferir entre ellos tecnología habilitante, siempre que así lo acuerden basándose en sus procedimientos establecidos de adopción de decisiones. Los suministradores reconocen que el enriquecimiento de uranio puede implicar cadenas de suministro para la producción y la transferencia de equipo para instalaciones de enriquecimiento, y esas transferencias podrán llevarse a cabo, a reserva de las disposiciones pertinentes de estas Directrices.
- e) Los suministradores deberían esforzarse especialmente por garantizar una aplicación efectiva de las salvaguardias del OIEA en las instalaciones de enriquecimiento suministradas, de conformidad con los párrafos 13 y 14 de estas Directrices. Para la transferencia de una instalación de enriquecimiento, el suministrador y el Estado destinatario deberán colaborar para asegurarse de que el diseño y la construcción de la instalación transferida se hacen de forma que faciliten las salvaguardias del OIEA. El suministrador y el Estado destinatario deberán consultar con el OIEA las características del diseño y la construcción lo antes posible durante la fase de diseño de la instalación y en cualquier momento antes de que se inicie la construcción de la instalación de enriquecimiento. El suministrador y el Estado destinatario deberán colaborar también para ayudar a este último a elaborar medidas eficaces de protección del material y las instalaciones nucleares de conformidad con los párrafos 12 y 14 de las Directrices.
- f) Los suministradores deberán cerciorarse de que los destinatarios tienen en vigor disposiciones que sean equivalentes o superiores a las suyas propias para proteger las instalaciones y la tecnología del uso o la transferencia no conformes a las leyes nacionales del Estado destinatario.

Sección de definiciones:

Para la aplicación del párrafo 7 de las Directrices, "empresa cooperativa de enriquecimiento" significa una creación o actividad de producción multinacionales o multiempresariales conjuntas (en las que al menos dos de las empresas se incorporan en distintos países). Podría tratarse de un consorcio de Estados o empresas o de una empresa multinacional.

Controles sobre materiales suministrados, o producidos a partir de materiales suministrados, que sean utilizables para la fabricación de armas o de otros dispositivos nucleares explosivos

8. Para promover el logro de los objetivos de estas directrices y para brindar mayores oportunidades de reducir los riesgos de proliferación, siempre que sea procedente y factible, los suministradores deberán incluir en los acuerdos sobre el suministro de materiales nucleares o de instalaciones que produzcan materiales utilizables para la fabricación de armas o de otros dispositivos nucleares explosivos, disposiciones que exijan el acuerdo mutuo entre el suministrador y el receptor sobre los arreglos necesarios para el reprocesamiento, almacenamiento, modificación, empleo, transferencia o retransferencia de todo material utilizable para la fabricación de armas nucleares o de otros dispositivos nucleares explosivos objeto de los mismos.

Controles sobre las retransferencias

9. a) Los suministradores transferirán los artículos o tecnología relacionada indicados en la lista inicial, únicamente con la garantía del receptor de que en caso de:

1) retransferencia de dichos artículos o tecnología relacionada,

0

2) transferencia de artículos de la lista inicial obtenidos en instalaciones inicialmente transferidas por el suministrad4or o con ayuda de equipo o tecnología inicialmente transferida por el suministrador;

el receptor de la retransferencia o transferencia haya facilitado las mismas garantías que exigidas por el suministrador para la transferencia inicial.

- b) Además, será necesario el consentimiento del suministrador para:
 - 1) toda retransferencia de artículos o tecnología relacionada de la lista inicial y toda transferencia mencionada en el apartado a) 2) del párrafo 9, desde cualquier Estado que no exija salvaguardias totales, conforme al apartado a) del párrafo 4 de estas Directrices, como condición de suministro;
 - toda retransferencia de instalaciones, equipo o tecnología conexa de enriquecimiento, reprocesamiento o producción de agua pesada, y para toda transferencia de instalaciones o equipo del mismo tipo obtenidos a partir de artículos transferidos inicialmente por el suministrador;
 - 3) toda retransferencia de agua pesada o materiales que sean utilizables para la fabricación de armas nucleares o de otros dispositivos nucleares explosivos.
- c) Para obtener el derecho de consentimiento definido en el apartado b) del párrafo 9 se requerirán garantías de gobierno a gobierno referentes a todas las transferencias iniciales pertinentes.
- d) Los suministradores considerarán actuar con moderación en la transferencia de los artículos y la tecnología relacionada indicados en la lista inicial si existe algún riesgo de retransferencias en contravención a las garantías proporcionadas con arreglo a los apartados a) y c) del presente párrafo debido a que el receptor no haya establecido y mantenido controles nacionales de exportación y reexportación apropiados y eficaces, de conformidad con lo dispuesto en al resolución 1540 del Consejo de Seguridad de las Naciones Unidas.

Principio de la no proliferación

10. No obstante otras disposiciones de estas Directrices, los suministradores sólo autorizarán la transferencia de artículos o tecnología relacionada de la lista inicial si están convencidos de que esas transferencias no contribuirán a la proliferación de las armas nucleares o de otros dispositivos nucleares explosivos ni se desviarán a actos de terrorismo nuclear.

Implementación

11. Los suministradores deberán establecer disposiciones jurídicas para garantizar la eficaz aplicación de las Directrices, incluidos reglamentos de concesión de licencias para la exportación, medidas coercitivas y sanciones en caso de infracción.

ACTIVIDADES AUXILIARES

Apoyo para acceder a materiales nucleares con fines pacíficos

12. Los suministradores, de conformidad con los objetivos de las presentes directrices, facilitarán el acceso a materiales nucleares para la utilización de la energía nuclear con fines pacíficos, y alentarán, en el marco del artículo IV del TNP, a los receptores a recurrir en la mayor medida posible al mercado comercial internacional y a otros mecanismos internacionales disponibles para obtener servicios relacionados con el combustible nuclear sin perjudicar el mercado mundial del combustible.

Seguridad física

13. Los suministradores fomentarán la cooperación internacional en materia de seguridad física mediante el intercambio de información al respecto, la protección de los materiales nucleares en tránsito y la recuperación de los materiales y equipo nucleares robados. Los suministradores promoverán la más amplia adhesión a los instrumentos internacionales respectivos, entre otros a la Convención sobre la protección física de los materiales nucleares, así como la aplicación del documento INFCIRC/225, en su forma enmendada cada cierto tiempo. Los suministradores reconocen la importancia de esas actividades y otras actividades conexas del OIEA para evitar la proliferación de las armas nucleares y hacer frente a la amenaza del terrorismo nuclear.

Apoyo a la aplicación efectiva de las salvaguardias del OIEA

14. Los suministradores deberán poner especial empeño en apoyar la aplicación efectiva de las salvaguardias del OIEA. Los suministradores deberán apoyar igualmente la labor del Organismo para ayudar a los Estados Miembros a perfeccionar sus sistemas nacionales de contabilidad y control de los materiales nucleares y a acrecentar la eficacia técnica de las salvaguardias.

Análogamente deberán hacer todo lo posible para apoyar al OIEA en su tarea de aumento constante de la idoneidad de las salvaguardias teniendo presentes los progresos técnicos y el rápido crecimiento del número de instalaciones nucleares, así como para apoyar las iniciativas adecuadas conducentes a perfeccionar la eficacia de las salvaguardias del OIEA.

Características de diseño de las plantas incluidas en la lista inicial

15. Los suministradores deberán estimular a los diseñadores y fabricantes de instalaciones incluidas en la lista inicial para que las construyan de manera tal que facilite la aplicación de salvaguardias y acreciente la protección física, teniendo en cuenta también el riesgo de ataques terroristas. Los suministradores deberán promover la protección de la información sobre el diseño de las instalaciones incluidas en la lista inicial y recalcar a los receptores la necesidad de hacerlo. Los suministradores también reconocen la importancia de introducir características de seguridad tecnológica y no proliferación en el diseño y construcción de las instalaciones incluidas en la lista inicial.

Controles de las exportaciones

16. Cuando proceda, los suministradores deberán recalcar a los receptores la necesidad de someter los artículos y tecnología relacionada de la lista inicial transferidos y los artículos de esta lista obtenidos en instalaciones inicialmente transferidas por el suministrador o con ayuda de equipo o tecnología inicialmente transferida por el suministrador a los controles de las exportaciones especificados en la resolución 1540 del Consejo de Seguridad de las Naciones Unidas. Se alienta

a los suministradores a ofrecer, cuando proceda y sea posible, asistencia a los receptores en el cumplimiento de sus respectivas obligaciones en virtud de esa resolución.

Consultas

- 17. a) Los suministradores se mantendrán en contacto y se consultarán por conducto ordinario sobre los asuntos relacionados con la aplicación de estas Directrices.
 - b) Los suministradores consultarán a otros gobiernos interesados, en la forma en que cada uno considere apropiada, sobre casos concretos de carácter delicado a fin de velar por que ninguna transferencia favorezca los riesgos de conflicto o inestabilidad.
 - c) Sin perjuicio de lo dispuesto en los apartados d) a f) del presente párrafo:
 - En caso de que uno o más suministradores opinen que se han vulnerado los acuerdos suministrador receptor derivados de estas Directrices, especialmente en caso de explosión de un dispositivo nuclear, o de que un receptor ponga término ilegalmente a las salvaguardias del OIEA o las infrinja, los suministradores se consultarán inmediatamente por conducto diplomático a fin de determinar y evaluar la realidad y alcance de la infracción denunciada. Se alienta igualmente a los suministradores a consultarse cuando se revele la existencia de materiales nucleares o actividades del ciclo del combustible nuclear no declarados al OIEA o de una actividad relacionada con dispositivos explosivos nucleares.
 - En espera del rápido resultado de dichas consultas, los suministradores no actuarán de modo que pueda prejuzgar cualquier medida que tal vez adopten otros suministradores con respecto a sus contactos en curso con el receptor en cuestión. Cada suministrador considerará igualmente la posibilidad de suspender las transferencias de artículos de la lista inicial mientras se encuentren en curso las consultas prevista en el apartado c) del presente párrafo, en espera de un acuerdo entre los suministradores sobre la respuesta apropiada.
 - Sobre la base de los resultados de dichas consultas, los suministradores, teniendo en cuenta el artículo XII del Estatuto del OIEA, deberán convenir la respuesta apropiada y las posibles medidas, entre las que pudiera incluirse la suspensión de las transferencias nucleares al receptor en cuestión.
 - d) Cuando el OIEA notifique que un receptor ha infringido su obligación de cumplir las disposiciones de su acuerdo de salvaguardias, los suministradores considerarán la suspensión de la transferencia de artículos de la lista inicial a ese Estado mientras éste sea investigado por el OIEA. A los efectos del presente párrafo, por "infracción" se entiende únicamente las infracciones graves de interés desde el punto de vista de la proliferación.
 - e) Los suministradores respaldan la suspensión de las transferencias de artículos de la lista inicial a los Estados que incumplen sus obligaciones de no proliferación nuclear y salvaguardias, y reconocen que la responsabilidad y autoridad respecto de esas decisiones incumben a los gobiernos nacionales o al Consejo de Seguridad de las Naciones Unidas. En particular, esto se aplica en situaciones en que la Junta de Gobernadores del OIEA adopta cualesquiera de las medidas siguientes:
 - confirma, con arreglo al párrafo C del artículo XII del Estatuto, que ha habido incumplimiento por parte del receptor, o pide a un Estado receptor que adopte medidas concretas encaminadas al cumplimiento de sus obligaciones de salvaguardias;

 decide que el Organismo no está en condiciones de verificar que no se ha producido ninguna desviación de los materiales nucleares que deben estar sometidos a salvaguardias, incluidas situaciones en que las medidas adoptadas por un Estado receptor no hayan permitido al OIEA cumplir su misión de salvaguardias en ese Estado.

Se celebrará una sesión plenaria extraordinaria en el plazo de un mes a partir de que la Junta de Gobernadores haya adoptado la medida en la que los suministradores examinarán la situación, compararán las políticas nacionales y acordarán la respuesta apropiada.

- f) Las disposiciones previstas en el apartado e) del presente párrafo no se aplican a las transferencias a que se refiere el apartado b) del párrafo 4 de las Directrices.
- 18. Se requiere la aprobación unánime de cualquier modificación de estas Directrices, incluso de cualquier modificación que pueda derivarse de la reconsideración mencionada en el párrafo 5.

ANEXO A LISTA INICIAL CITADA EN LAS DIRECTRICES

NOTAS GENERALES

- 1. El objeto de estos controles no deberá frustrarse por la transferencia de piezas. Cada Gobierno tomará todas las medidas que estén en su mano para alcanzar este objetivo, y continuará buscando una definición práctica del término piezas, que puedan utilizar todos los proveedores.
- 2. Con referencia al apartado b) 2) del párrafo 9 de las Directrices, se entenderá por *mismo tipo* el diseño, la construcción o los procesos de explotación basados en procesos físicos o químicos iguales o similares a los especificados en la lista inicial.
- 3. Los suministradores reconocen la estrecha relación que existe, con respecto a determinados procesos de separación isotópica, entre las instalaciones, el equipo y la tecnología que se utilizan en el enriquecimiento del uranio y los dedicados a la separación de isótopos estables para actividades de investigación, aplicaciones médicas y otras finalidades industriales no nucleares. A este respecto, los suministradores deberían examinar cuidadosamente sus disposiciones jurídicas, comprendidos los reglamentos de concesión de licencias de exportación y las prácticas de clasificación de la información/tecnología y de seguridad para las actividades de separación de isótopos estables, con objeto de garantizar que se apliquen debidamente las medidas de protección apropiadas. Los suministradores reconocen que, en determinados casos, las medidas de protección apropiadas para las actividades de separación de isótopos estables serán esencialmente las mismas que las aplicables al enriquecimiento del uranio. (Véase la nota introductoria de la sección 5 de la lista inicial.) De conformidad con el apartado a) del párrafo 16 de las Directrices, los suministradores consultarán con otros suministradores, según proceda, a fin de promover la aplicación de políticas y procedimientos uniformes en lo que respecta a la transferencia y protección de instalaciones, equipo y tecnología de separación de isótopos estables.

CONTROLES DE TECNOLOGÍA

La transferencia de "tecnología" directamente asociada a cualquier artículo de la lista se someterá al mismo grado de escrutinio y control que el propio artículo, en la medida en que lo permita la legislación nacional.

Los controles de transferencia de "tecnología" no se aplicarán a la información "de dominio público" ni a la "investigación científica básica".

Además de los controles de transferencia de "tecnología" por razones de no proliferación nuclear, los suministradores deberán promover la protección de esa tecnología en cuanto al diseño, construcción y explotación de las instalaciones incluidas en la lista inicial teniendo presente el riesgo de ataques terroristas, y deberán recalcar a los receptores la necesidad de hacerlo.

DEFINICIONES

Se entenderá por "tecnología" la información específica requerida para el "desarrollo", la "producción" o la "utilización" de cualquiera de los artículos que figuran en la Lista, información que podrá adoptar la forma de "datos técnicos" o "asistencia técnica".

"Investigación científica básica" - Trabajos experimentales o teóricos emprendidos principalmente para adquirir nuevos conocimientos acerca de los principios fundamentales de fenómenos o de hechos observables, que no están orientados esencialmente hacia un fin u objetivo práctico específico.

Por "desarrollo" se entenderá todas las fases previas a la "producción", tales como:

- El proyecto
- La investigación para el proyecto
- Los análisis del diseño
- Conceptos básicos del proyectoEl montaje y ensayo de prototipos
- Los esquemas de producción piloto
- Los datos del proyecto
- El proceso de convertir los datos del proyecto en un producto
- La configuración del proyecto
- La integración del proyecto
- Planos y esquemas (en general)

"De dominio público" - Por tecnología de "dominio público", tal como se emplea en el presente texto, se entenderá la "tecnología" que se ha puesto a disposición sin restricciones respecto a su ulterior difusión. (Las restricciones dimanantes de la propiedad intelectual o industrial no excluyen a la tecnología del dominio público.)

Por "producción" se entenderán todas las fases de producción, tales como:

- Construcción
- La ingeniería de producción
- La fabricación
- La integración
- El ensamblado (montaje)
- La inspección
- Los ensayos
- La garantía de calidad

La "asistencia técnica" Esta podrá asumir las formas de: instrucción, adiestramiento especializado, formación, conocimientos prácticos, servicios consultivos.

Nota: la "asistencia técnica" podrá entrañar la transferencia de "datos técnicos".

"Datos técnicos" - Los "datos técnicos" podrán asumir la forma de copias heliográficas, planos, diagramas, modelos, fórmulas, diseño y especificaciones de ingeniería, manuales e instrucciones escritas o registradas en otros medios o ingenios tales como discos, cintas, memorias "ROM".

"Utilización" - Por "utilización" se entenderá la operación, la instalación (incluida la instalación *in situ*), el mantenimiento (verificación), la reparación, la revisión general y la reconstrucción.

MATERIALES Y EQUIPO

1. Materiales básicos y materiales fisionables especiales

Según se define en el artículo XX del Estatuto del Organismo Internacional de Energía Atómica:

1.1. "Materiales básicos"

Se entiende por "materiales básicos" el uranio constituido por la mezcla de isótopos que contiene en su estado natural; el uranio en que la proporción de isótopo 235 es inferior a la normal; el torio; cualquiera de los elementos citados en forma de metal, aleación, compuesto químico o concentrado; cualquier otro material que contenga uno o más de los elementos citados en la concentración que la Junta de Gobernadores determine en su oportunidad; y los demás materiales que la Junta de Gobernadores determine en su oportunidad.

1.2. "Materiales fisionables especiales"

- i) Se entiende por "materiales fisionables especiales" el plutonio 239; el uranio 233; el uranio enriquecido en los isótopos 235 o 233; cualquier material que contenga uno o varios de los elementos citados; y los demás materiales fisionables que la Junta de Gobernadores determine en su oportunidad; no obstante, la expresión "materiales fisionables especiales" no comprende los materiales básicos.
- ii) Se entiende por "uranio enriquecido en los isótopos 235 ó 233" el uranio que contiene los isótopos 235 o 233, o ambos, en tal cantidad que la relación entre la suma de las cantidades de estos isótopos y la de isótopo 238 sea mayor que la relación entre la cantidad de isótopo 235 y la de isótopo 238 en el uranio natural.

Ahora bien, para los fines de las presentes Directrices, los artículos especificados en el siguiente apartado a) y las exportaciones de materiales básicos o materiales fisionables especiales efectuadas dentro de un mismo período de 12 meses a un mismo país destinatario en cantidades inferiores a los límites especificados en el siguiente apartado b) no deberán incluirse:

a) Plutonio con una concentración isotópica de plutonio 238 superior al 80%.

Materiales fisionables especiales que se utilicen en cantidades del orden del gramo o menores como elementos sensores en instrumentos; y

Materiales básicos que el Gobierno compruebe a su satisfacción que van a utilizarse únicamente en actividades no nucleares, tales como la producción de aleaciones o de materiales cerámicos.

 b) Material fisionable especial Uranio natural Uranio empobrecido Torio 50 gramos efectivos; 500 kilogramos; 1 000 kilogramos; 1 000 kilogramos.

2. Equipo y materiales no nucleares

La designación de las partidas de equipo y materiales no nucleares aprobada por el Gobierno es la que figura a continuación (considerándose como insignificantes, para todos los fines prácticos, las cantidades inferiores a los valores indicados en el anexo B):

- 2.1. Reactores nucleares y equipo especialmente concebido o preparado y componentes para los mismos (véase la Sección 1 del anexo B);
- 2.2. Materiales no nucleares para reactores (véase la sección 2 del anexo B);
- 2.3. Plantas para el reprocesamiento de elementos combustibles irradiados, y equipo especialmente concebido o preparado para dicha operación (véase la sección 3 del anexo B);
- 2.4. Plantas para la fabricación de elementos combustibles para reactores nucleares, y equipo especialmente concebido o preparado para dicha operación (véase la sección 4 del anexo B);
- 2.5. Plantas para la separación de isótopos del uranio natural, uranio empobrecido o material fisionable especial y equipo, distinto de los instrumentos de análisis, especialmente concebido o preparado para ello (véase la sección 5 del anexo B);
- 2.6. Plantas para la producción o concentración de agua pesada, deuterio y compuestos de deuterio y equipo especialmente concebido o preparado para ello (véase la sección 6 del anexo B).
- 2.7. Plantas para la conversión de uranio y plutonio para utilización en la fabricación de elementos combustibles y la separación de isótopos del uranio, según se define en las secciones 4 y 5 respectivamente, y equipo especialmente concebido o preparado para ello (véase la sección 7 del anexo B).

ANEXO B ACLARACIÓN SOBRE LOS ELEMENTOS DE EQUIPO CONSIGNADOS EN LA LISTA INICIAL

(conforme a las denominaciones que figuran en la sección 2 de MATERIALES Y EQUIPO, del anexo A)

1. Reactores nucleares y equipo especialmente diseñado o preparado y componentes para los mismos

1.1. Reactores nucleares completos

Reactores nucleares capaces de funcionar de manera que se pueda mantener y controlar una reacción de fisión en cadena autosostenida, excluidos los reactores de energía nula; éstos últimos se definen como reactores con un índice teórico máximo de producción de plutonio no superior a 100 gramos al año.

NOTA EXPLICATIVA

Un "reactor nuclear" comprende fundamentalmente todos los dispositivos que se encuentran en el interior de la vasija del reactor o que están conectados directamente con ella, el equipo que regula el nivel de potencia en el núcleo, y los componentes que normalmente contienen el refrigerante primario del núcleo del reactor o que están directamente en contacto con dicho refrigerante o lo regulan.

No se pretende excluir a los reactores que podrían razonablemente ser susceptibles de modificación para producir cantidades considerablemente superiores a 100 gramos de plutonio al año. Los reactores diseñados para funcionar en régimen continuo a niveles considerables de potencia no se considerarán como "reactores de energía nula" cualquiera que sea su capacidad de producción de plutonio.

EXPORTACIONES

La exportación del conjunto completo de partidas principales comprendidas dentro de este concepto tendrá lugar únicamente de conformidad con los procedimientos expuestos en las Directrices. Las partidas individuales de equipo comprendidas dentro de este concepto funcionalmente definido que habrán de exportarse únicamente de conformidad con los procedimientos expuestos en las Directrices se enumeran en los párrafos 1.2 a 1.10. El Gobierno se reserva el derecho de aplicar los procedimientos expuestos en las Directrices a otros elementos de equipo comprendidos dentro de este concepto funcionalmente definido.

1.2. Vasijas de reactores nucleares

Vasijas metálicas, o piezas importantes fabricadas en taller para las mismas, especialmente concebidas o preparadas para contener el núcleo de un reactor nuclear conforme se le define en el anterior párrafo 1.1, así como los dispositivos interiores del reactor, conforme se definen en el siguiente párrafo 1.8.

NOTA EXPLICATIVA

La tapa de la vasija del reactor queda comprendida en el concepto indicado en el párrafo 1.2 como pieza importante fabricada en taller para una vasija de reactor.

1.3. Máquinas para la carga y descarga del combustible en los reactores nucleares

Equipo de manipulación especialmente diseñado o preparado para insertar o extraer el combustible en un reactor nuclear conforme se define en el anterior párrafo 1.1.

NOTA EXPLICATIVA

Con las partidas de equipo anteriormente indicadas es posible cargar el combustible con el reactor en funcionamiento o utilizar características de disposición o alineación técnicamente complejas que permitan realizar operaciones complicadas de carga de combustible con el reactor parado tales como aquéllas en las que normalmente no es posible la visión directa del combustible o el acceso a éste.

1.4. Barras y equipo de control para reactores nucleares

Barras especialmente diseñadas o preparadas, estructuras de apoyo o suspensión de las mismas, mecanismos de accionamiento de barras o tubos de guía de barras para el control del proceso de fisión en un reactor nuclear conforme se define en el anterior párrafo 1.1.

1.5. Tubos de presión de reactores nucleares

Tubos especialmente diseñados o preparados para contener los elementos combustibles y el refrigerante primario en un reactor nuclear conforme se le define en el anterior párrafo 1.1, a una presión de trabajo superior a 50 atmósferas.

1.6. Tubos de circonio

Circonio metálico y aleaciones de circonio en forma de tubos o conjuntos de tubos, y en cantidades que excedan de 500 kg para cualquier país destinatario y en cualquier período de 12 meses, especialmente diseñados o preparados para ser utilizados en un reactor nuclear conforme se define en el anterior párrafo 1.1, y en los que la razón hafnio/circonio sea inferior a 1:500 partes en peso.

1.7. Bombas del refrigerante primario

Bombas especialmente diseñadas o preparadas para hacer circular el refrigerante primario de reactores nucleares conforme se definen en el anterior párrafo 1.1.

NOTA EXPLICATIVA

Las bombas especialmente diseñadas o preparadas pueden comprender sistemas complejos de estanqueidad sencilla o múltiple para impedir las fugas del refrigerante primario, bombas de rotor blindado y bombas con sistemas de masa inercial. Esta definición abarca las bombas conformes con la subsección NB (componentes de la Clase 1) de la sección III, División I, del Código de la American Society of Mechanical Engineers (ASME) o normas equivalentes.

1.8. Dispositivos interiores de reactores nucleares

"Dispositivos interiores de reactores nucleares" especialmente concebidos o preparados para su empleo en un reactor nuclear conforme se define en el anterior párrafo 1.1, incluidos pilares de apoyo para el núcleo, canales de combustible, blindajes térmicos, placas deflectoras, placas para el reticulado del núcleo y placas difusoras.

NOTA EXPLICATIVA

Los "dispositivos interiores de reactores nucleares" son estructuras importantes dentro de la vasija del reactor que tienen una o varias funciones tales como servir de soporte al núcleo, mantener la alineación del combustible, dirigir el flujo del refrigerante primario, proporcionar blindaje radiológico para la vasija del reactor y guiar la instrumentación intranuclear.

1.9. Intercambiadores de calor

Intercambiadores de calor (generadores de vapor) especialmente concebidos o preparados para su empleo en el circuito primario de refrigeración de un reactor nuclear conforme se define en el anterior párrafo 1.1.

NOTA EXPLICATIVA

Los generadores de vapor están especialmente diseñados o preparados para transferir el calor generado en el reactor (lado primario) al agua de alimentación (lado secundario) para la generación de vapor. En el caso de un reactor reproductor rápido refrigerado por metal líquido en el que existe también un circuito de refrigeración intermedio por metal líquido, se entiende que los intercambiadores de calor para transferir el calor del lado primario al circuito de refrigeración intermedio se encuentran dentro del alcance del control, además del generador de vapor. El alcance del control de este epígrafe no comprende los intercambiadores de calor para el sistema de refrigeración del emergencia o el sistema de refrigeración del calor de desintegración.

1.10. Instrumentos de detección y medición de neutrones

Instrumentos de detección y medición de neutrones especialmente diseñados o preparados para determinar los niveles de flujo neutrónico dentro del núcleo de un reactor conforme se define en el anterior párrafo 1.1.

NOTA EXPLICATIVA

El alcance de este epígrafe comprende la instrumentación intranuclear y extranuclear que mide los niveles de flujo en un amplio intervalo, característicamente de 10⁴ neutrones por cm² por segundo, o más. Por extranuclear se entiende la instrumentación situada fuera del núcleo de un reactor conforme se define en el anterior párrafo 1.1, pero situada en el interior del blindaje biológico.

2. Materiales no nucleares para reactores

2.1. Deuterio y agua pesada

Deuterio, agua pesada (óxido de deuterio) y cualquier otro compuesto de deuterio en el que la razón deuterio/átomos de hidrógeno exceda de 1:5 000, para su utilización en un reactor nuclear conforme se le define en el anterior párrafo 1.1, en cantidades que excedan de 200 kg de átomos de deuterio, para un mismo país destinatario dentro de un mismo período de 12 meses.

2.2. Grafito de pureza nuclear

Grafito con un nivel de pureza superior a 5 partes por millón de boro equivalente y con una densidad superior a 1,50 g/cm³, para su utilización en un reactor nuclear conforme se le define en el anterior párrafo 1.1, en cantidades que excedan de 30 toneladas métricas para un mismo país receptor dentro de un mismo período de 12 meses.

NOTA EXPLICATIVA

Al efecto de controlar las exportaciones, el Gobierno determinará si las exportaciones de grafito que cumplan las especificaciones anteriores son o no para ser utilizadas en un reactor nuclear.

El boro equivalente (BE) puede determinarse experimentalmente o se calcula como la suma de BE_Z para impurezas (excluido el $BE_{carbono}$ dado que el carbono no se considera una impureza) incluido el boro, donde:

 BE_Z (ppm) = CF x concentración del elemento Z (en ppm);

CF es el factor de conversión: $(\sigma_z \times A_B)$ dividido por $(\sigma_B \times A_z)$;

 σ_B y σ_z son las secciones eficaces de captura de neutrones térmicos (en barnios) para el boro natural y

el elemento \bar{Z} , respectivamente; y A_B y A_Z son las masas atómicas del boro natural y del elemento Z, respectivamente.

3. Plantas para el reprocesamiento de elementos combustibles irradiados, y equipo especialmente diseñado o preparado para dicha operación

NOTA INTRODUCTORIA

En el reprocesamiento del combustible nuclear irradiado, el plutonio y el uranio se separan de los productos de fisión intensamente radiactivos y de otros elementos transuránicos. Esta separación puede lograrse mediante diferentes procesos técnicos. Sin embargo, al cabo de cierto número de años el proceso Purex se ha acreditado y extendido más que los demás. Este proceso entraña la disolución del combustible nuclear irradiado en ácido nítrico, a la que sigue la separación del uranio, el plutonio y los productos de la fisión mediante la extracción con disolventes empleando una mezcla de fosfato de tributilo en un diluyente orgánico.

Las instalaciones Purex tienen funciones de proceso similares entre sí, incluidas las siguientes: troceado de los elementos combustibles irradiados, lixiviación del combustible, extracción con disolventes y almacenamiento de licores de proceso. Puede haber asimismo equipo para la desnitrificación térmica del nitrato de uranio, la conversión del nitrato de plutonio en óxido o metal, y el tratamiento del licor de desecho de los productos de fisión para darle forma que se preste al almacenamiento o a la disposición final por largo plazo. No obstante, el tipo y la configuración específicos del equipo destinado a estas operaciones pueden diferir entre unas instalaciones Purex y otras, y ello por varias razones, incluidos el tipo y cantidad del combustible nuclear irradiado que se ha de reprocesar y el destino que se quiera dar a los materiales recuperados, además de las nociones de seguridad y de mantenimiento que hayan orientado el diseño de cada instalación.

Una "planta para el reprocesamiento de elementos combustibles irradiados" comprende el equipo y los componentes que normalmente están en contacto directo con las principales corrientes de tratamiento de los materiales nucleares y productos de fisión y las controlan directamente.

Estos procesos, incluidos los sistemas completos para la conversión de plutonio y la producción de plutonio metal, pueden identificarse mediante las medidas tomadas para evitar la criticidad (p. ej. mediante la geometría), la exposición a las radiaciones (p. ej. mediante el blindaje) y los riesgos de toxicidad (p. ej. mediante la contención).

EXPORTACIONES

La exportación del conjunto completo de partidas principales comprendidas dentro de este concepto tendrá lugar únicamente de conformidad con los procedimientos expuestos en las Directrices.

El Gobierno se reserva el derecho de aplicar los procedimientos expuestos en las Directrices a otros artículos comprendidos dentro de este concepto funcionalmente definido, que se enumeran a continuación.

Los elementos de equipo que se consideran incluidos en la frase "y equipo especialmente diseñado o preparado" para el reprocesamiento de elementos combustibles irradiados comprenden:

3.1. Troceadores de elementos combustibles irradiados

NOTA INTRODUCTORIA

Este equipo rompe la vaina del elemento combustible y expone así a la acción lixiviadora el material nuclear irradiado. Para esta operación suelen emplearse cizallas metálicas de diseño especial, aunque puede utilizarse equipo avanzado, como los láser, por ejemplo.

Equipo teleaccionado especialmente diseñado o preparado para ser utilizado en una planta de reprocesamiento conforme se la describe anteriormente y destinado al troceo, corte o cizallamiento de conjuntos, haces o barras de combustible irradiado.

3.2. Recipientes de lixiviación

NOTA INTRODUCTORIA

Estos recipientes suelen recibir el combustible gastado troceado. En estos recipientes, a prueba de criticidad, el material nuclear irradiado se lixivia con ácido nítrico, y los fragmentos de vainas remanentes se eliminan del circuito del proceso.

Tanques a prueba del riesgo de criticidad (por ejemplo: tanques de pequeño diámetro, anulares o de placas) especialmente concebidos o preparados para su utilización en una planta de reprocesamiento conforme se la describe anteriormente, destinados a la operación de disolución de combustible nuclear irradiado, capaces de resistir la presencia de un líquido a alta temperatura y muy corrosivo, y que pueden ser teleaccionados para su carga y mantenimiento.

3.3. Extractores mediante disolvente y equipo para la extracción con disolventes

NOTA INTRODUCTORIA

Estos extractores reciben la solución de combustible irradiado proveniente de los recipientes de lixiviación y también la solución orgánica que separa el uranio, el plutonio y los productos de fisión. El equipo para la extracción con disolventes suele diseñarse para cumplir parámetros de operación rigurosos, como la vida operacional prolongada sin necesidad de mantenimiento, o bien gran sustituibilidad, sencillez de funcionamiento y de control, y flexibilidad frente a las variaciones de las condiciones del proceso.

Extractores por disolvente especialmente diseñados o preparados, como por ejemplo, columnas pulsantes o de relleno, mezcladores - sedimentadores, o contactadores centrífugos, para ser empleados en una planta de reprocesamiento de combustible irradiado. Los extractores por disolvente deben ser resistentes a los efectos corrosivos del ácido nítrico. Los extractores por disolvente suelen construirse con arreglo a normas sumamente estrictas (incluso soldaduras especiales y técnicas especiales de inspección, control de calidad y garantía de calidad) con aceros inoxidables al carbono, titanio, circonio u otros materiales de alta calidad.

3.4. Recipientes de retención o almacenamiento químico

NOTA INTRODUCTORIA

De la etapa de extracción mediante disolvente se derivan tres circuitos principales de licor de proceso. Para el tratamiento ulterior de estos tres circuitos se emplean recipientes de retención o almacenamiento, de la manera siguiente:

- a) La solución de nitrato de uranio puro se concentra por evaporación y se hace pasar a un proceso de desnitrificación en el que se convierte en óxido de uranio. Este óxido se reutiliza en el ciclo del combustible nuclear.
- b) La solución de productos de fisión intensamente radiactivos suele concentrarse por evaporación y almacenarse como concentrado líquido. Este concentrado puede luego ser evaporado y convertido en una forma adecuada para el almacenamiento o la disposición final.
- c) La solución de nitrato de plutonio puro se concentra y se almacena en espera de su transferencia a etapas ulteriores del proceso. En particular, los recipientes de retención o almacenamiento destinados a las soluciones de plutonio están concebidos para evitar problemas de criticidad resultantes de cambios en la concentración y en la forma de este circuito.

Recipientes de retención o de almacenamiento especialmente diseñados o preparados para ser utilizados en plantas de reprocesamiento de combustible irradiado. Los recipientes de retención o almacenamiento deben ser resistentes al efecto corrosivo del ácido nítrico. Suelen construirse con materiales tales como aceros inoxidables de bajo contenido de carbono, titanio, circonio, u otros materiales de alta calidad. Los recipientes de retención o almacenamiento pueden diseñarse para la manipulación y el mantenimiento por control remoto, y pueden tener las siguientes características para el control de la criticidad nuclear:

- 1) paredes o estructuras internas con un equivalente de boro de por lo menos el 2%, o bien
- 2) (un diámetro máximo de 175 mm (7 pulgadas) en el caso de recipientes cilíndricos, o bien
- 3) un ancho máximo de 75 mm (3 pulgadas) en el caso de recipientes anulares o planos.

4. Plantas para la fabricación de elementos combustibles para reactores nucleares, y equipo especialmente diseñado o preparado para dicha operación

NOTA INTRODUCTORIA

Los elementos combustibles nucleares se fabrican de uno o más de los materiales básicos o fisionables especiales mencionados en MATERIALES Y EQUIPO del presente Anexo. Para los combustibles a base de óxidos, el tipo de combustible más corriente, existirá equipo de prensado de las pastillas, de sinterización, de molienda y de granulometría. Los combustibles de mezcla de óxidos se manipulan en cajas de guantes (o una contención equivalente) hasta que se sellan en las vainas. En todos los casos, el combustible se sella herméticamente en vainas adecuadas diseñadas para constituir la envolvente primaria de encapsulación del combustible de modo que se logre el comportamiento y la seguridad adecuados durante la explotación del reactor. También es necesario en todos los casos un control exacto de los procesos, procedimientos y equipo con sujeción a normas sumamente estrictas para tener la certeza de un comportamiento previsible y seguro del combustible.

NOTA EXPLICATIVA

Los elementos de equipo que se consideran incluidos en la frase "y equipo especialmente diseñado o preparado" para la fabricación de elementos combustibles comprenden:

- a) el equipo que normalmente está en contacto directo con la corriente de producción de materiales nucleares o que se emplea directamente para el tratamiento o control de dicha corriente, o bien;
- b) el equipo empleado para encerrar el combustible nuclear dentro de su vaina;
- c) el equipo que verifica la integridad de las vainas o del sellado;
- d) el equipo que verifica el tratamiento de acabado del combustible sellado.

Dicho equipo o sistemas de equipo pueden comprender, por ejemplo:

- estaciones totalmente automáticas de inspección de pastillas especialmente concebidas o preparadas para verificar las dimensiones finales y defectos superficiales de las pastillas de combustible;
- 2) máquinas de soldadura automáticas especialmente concebidas o preparadas para soldar las tapas del extremo de las varillas (o barras) de combustible;
- 3) estaciones automáticas de ensayo e inspección especialmente concebidas o preparadas para verificar la integridad de las varillas (o barras) de combustible finalizadas.

El elemento de equipo 3 comprende normalmente: a) equipo de examen por rayos X para examinar las soldaduras de las tapas de los extremos de las varillas (o barras), b) equipo de detección de fugas de helio de varillas (o barras) a presión, y c) equipo de exploración por rayos gamma de las varillas (o barras) para verificar la carga correcta de las pastillas de combustible en su interior.

5. Plantas para la separación de isótopos del uranio natural, uranio empobrecido o material fisionable especial y equipo, distinto de los instrumentos de análisis, especialmente concebido o preparado para ello

NOTA INTRODUCTORIA

Las instalaciones, el equipo y la tecnología que se utilizan en la separación isotópica del uranio tienen, en muchos casos, estrechas relaciones con los dedicados a la separación de isótopos estables. Por consiguiente en determinados casos, los controles previstos en la sección 5 también se aplican a las instalaciones y el equipo que se utilizan en la separación de isótopos estables. Estos controles complementan a los que se aplican a las instalaciones y el equipo especialmente diseñados o preparados para el tratamiento, el uso o la producción de material fisionable especial abarcado en la lista inicial. Estos controles complementarios de la sección 5 relativos a la utilización de los isótopos estables no se aplican al proceso de separación electromagnética de isótopos, que se aborda en la parte 2 de las Directrices.

Los procesos a los que se aplican los controles de la sección 5, ya se trate de su utilización para la separación isotópica del uranio o bien para la separación de isótopos estables, son los siguientes: centrifugadora de gas, difusión gaseosa, proceso de separación en un plasma y procesos aerodinámicos.

En algunos procesos, la relación con la separación isotópica del uranio depende del elemento (isótopo estable) que haya de separarse. Esos procesos son los siguientes: procesos basados en rayos láser (por ejemplo, la separación isotópica por láser de moléculas y la separación isotópica por láser en vapor atómico), el intercambio químico y el intercambio iónico. Por consiguiente, los suministradores deben evaluar estos procesos caso por caso para aplicar los controles de la sección 5 relativos a la utilización de los isótopos estables.

Los elementos de equipo que se consideran incluidos en la frase "equipo, distinto de los instrumentos de análisis, especialmente diseñado o preparado" para la separación de isótopos del uranio comprenden:

5.1. Centrifugadoras de gas y conjuntos y componentes especialmente diseñados o preparados para su uso en centrifugadoras de gas

NOTA INTRODUCTORIA

Una centrifugadora de gas consiste normalmente en un cilindro o cilindros de paredes delgadas, de un diámetro de 75 mm (3 pulgadas) a 400 mm (16 pulgadas), contenidos en un vacío y sometidos a un movimiento rotatorio que produce elevada velocidad periférica del orden de 300 m/s o más; el eje central del cilindro es vertical. A fin de conseguir una elevada velocidad de rotación, los materiales de construcción de los componentes rotatorios deben poseer una elevada razón resistencia/densidad, y el conjunto rotor y, por consiguiente, sus componentes individuales, deben construirse con tolerancias muy ajustadas con objeto de minimizar los desequilibrios. A diferencia de otras centrifugadoras, la de gas usada para el enriquecimiento del uranio se caracteriza por tener dentro de la cámara rotatoria una o varias pantallas rotatorias y en forma de disco y un sistema de tubo estacionario para alimentar y extraer el gas UF₆, consistente en tres canales separados por lo menos, dos de los cuales se hallan conectados a paletas que se extienden desde el eje del rotor hacia la periferia de la cámara del mismo. También contenido en el medio vacío se encuentra un número de elementos importantes no rotatorios los que, aunque de diseño especial, no son difíciles de fabricar ni están fabricados con materiales muy especiales. Sin embargo, una instalación de

centrifugación necesita un gran número de estos componentes, de modo que su cantidad puede constituir una importante indicación del uso a que se destinan.

5.1.1. Componentes rotatorios

a) Conjuntos rotores completos:

Cilindros de paredes delgadas, o un número de tales cilindros interconectados, construidos con uno o más de los materiales de elevada razón resistencia/densidad descritos en la NOTA EXPLICATIVA de esta sección. Cuando se hallan interconectados, los cilindros están unidos por fuelles flexibles o anillos según se describe en la sección 5.1.1 c) *infra*. El rotor está provisto de una o varias placas deflectoras internas y tapas terminales según se describe en la sección 5.1.1 d) y e), en su forma final. Sin embargo, el conjunto completo se puede también entregar sólo parcialmente montado.

b) Tubos de rotores:

Cilindros de paredes delgadas especialmente diseñados o preparados, con un espesor de 12 mm (0,5 pulgadas) o menos, un diámetro de 75 mm (3 pulgadas) a 400 mm (16 pulgadas), y construidos con uno o más de los materiales de elevada razón resistencia/densidad descritos en la NOTA EXPLICATIVA de esta sección.

c) Anillos o fuelles:

Componentes especialmente diseñados o preparados para reforzar localmente el tubo rotor o unir varios tubos rotores. Los fuelles son cilindros cortos de un espesor de pared de 3 mm (0,12 pulgadas) o menos, un diámetro de 75 mm (3 pulgadas) a 400 mm (16 pulgadas), de forma convolutiva, construidos con uno de los materiales de elevada razón resistencia/densidad descritos en la NOTA EXPLICATIVA de esta Sección.

d) Pantallas:

Componentes en forma de disco de 75 mm (3 pulgadas) a 400 mm (16 pulgadas) de diámetro especialmente diseñados o preparados para ser montados dentro del tubo rotor de la centrifugadora a fin de aislar la cámara de toma de la cámara principal de separación y, en algunos casos, de facilitar la circulación del gas de UF₆ dentro de la cámara principal de separación del tubo rotor; están construidos con uno de los materiales de elevada razón resistencia/densidad descritos en la NOTA EXPLICATIVA de esta sección.

e) Tapas superiores/tapas inferiores:

Componentes en forma de disco de 75 mm (3 pulgadas) a 400 mm (16 pulgadas) de diámetro especialmente diseñados o preparados para ajustarse a los extremos del tubo rotor y contener así el UF₆ dentro de dicho tubo, y, en algunos casos, apoyar, retener o contener, como una parte integrada, un elemento de soporte superior (tapa superior) o sostener los elementos rotatorios del motor y del soporte inferior (tapa inferior); están construidos con uno de los materiales de elevada razón resistencia/densidad descritos en la NOTA EXPLICATIVA de esta sección.

NOTA EXPLICATIVA

Los materiales usados para los componentes rotatorios de la centrifugadora son:

- a) Acero martensítico capaz de una resistencia límite a la tracción de 2,05x10⁹ N/m² (300 000 psi) o más;
- b) Aleaciones de aluminio capaces de una resistencia límite a la tracción de 0,46x10⁹ N/m² (67 000 psi) o más;
- c) Materiales filamentosos apropiados para su uso en estructuras compuestas y que poseen un módulo específico de 3,18 x 10⁶ m o mayor, y una resistencia límite a la tracción de 7,62 x 10⁴ m o más ("Módulo específico" es el Módulo de Young en N/m² dividido por el peso específico en N/m³; "Resistencia límite a la tracción específica" es la resistencia límite a la tracción en N/m² dividida por el peso específico en N/m³).

5.1.2. Componentes estáticos

a) Soportes magnéticos de suspensión:

Conjuntos de suspensión especialmente diseñados o preparados consistentes en un electroimán anular suspendido en una caja que contiene un medio amortiguador. La caja se construye con un material resistente al UF₆ (véase la NOTA EXPLICATIVA de la sección 5.2.). El imán se acopla con una pieza polo o con un segundo imán ajustado a la tapa superior descrita en la sección 5.1.1.e). El imán puede tener forma anular con una relación menor o igual a 1,6:1 entre el diámetro exterior y el interior. El imán puede presentar una forma con una permeabilidad inicial de 0,15 H/m (120 000 en unidades CGS) o más, o una remanencia de 98,5% o más, o un producto de energía de más de 80 kJ/m³ (10⁷ gauss - oersteds). Además de las propiedades usuales de los materiales, es requisito esencial que la desviación de los ejes magnéticos respecto de los geométricos se limite a muy pequeñas tolerancias (menos de 0,1 mm o 0,004 pulgadas) y que la homogeneidad del material del imán sea muy elevada.

b) Soportes/amortiguadores:

Soportes especialmente diseñados o preparados que comprenden un conjunto pivote/copa montado en un amortiguador. El pivote es generalmente una barra de acero templado pulimentado en un extremo en forma de semiesfera y provista en el otro extremo de un medio de sujeción en la tapa inferior descrita en la sección 5.1.1 e). Este pivote también puede tener un soporte hidrodinámico. La copa es una pastilla configurada con una indentación semiesférica en una de sus superficies. Estos dos componentes se suministran a menudo independientemente del amortiguador.

c) Bombas moleculares:

Cilindros especialmente preparados o concebidos con surcos helicoidales maquinados o extruidos y paredes interiores maquinadas. Las dimensiones típicas son las siguientes: de 75 mm (3 pulgadas) a 400 mm (16 pulgadas) de diámetro interno; 10 mm (0,4 pulgadas) o más de espesor de pared; longitud igual o mayor que el diámetro. Los surcos tienen generalmente sección transversal rectangular y 2 mm (0,08 pulgadas) o más de profundidad.

d) Estatores de motores:

Estatores de forma anular especialmente diseñados o preparados para motores multifásicos de alta velocidad de corriente alterna por histéresis (o reluctancia) para su funcionamiento sincrónico en un vacío en la gama de frecuencias de 600 – 2 000 Hz y un intervalo de potencia de 50 - 1 000 VA. Los estatores consisten en embobinados multifásicos sobre un núcleo de hierro de baja pérdida compuesto de finas capas de un espesor típico de 2,0 mm (0,08 pulgadas) o menos.

e) Recipientes/cajas de centrifugadoras:

Componentes especialmente diseñados o preparados para alojar un conjunto de tubos rotores de una centrifugadora de gas. La caja está formada por un cilindro rígido, tiene un espesor de la pared de hasta 30 mm (1,2 pulgadas), con los extremos maquinados con precisión para contener los soportes y con una o varias bridas para el montaje. Los extremos maquinados son paralelos entre sí y perpendiculares al eje longitudinal del cilindro con una desviación de 0,05 grados o menos. La caja puede ser también una estructura alveolar para contener varios tubos rotores. Las cajas están construidas o protegidas con materiales resistentes a la corrosión por el UF₆.

f) Paletas:

Tubos especialmente diseñados o preparados de hasta 12 mm (0,5 pulgadas) de diámetro interno para la extracción del UF₆ gaseoso del tubo rotor por acción de un tubo de Pitot (es decir, con una abertura que desemboca en el flujo de gas periférico situado dentro del tubo rotor; esto se obtiene, por ejemplo, doblando el extremo de un tubo dispuesto radialmente) y capaces de conectarse al sistema central de extracción de gas. Los tubos están fabricados o protegidos con materiales resistentes a la corrosión por el UF₆.

5.2. Sistemas, equipo y componentes auxiliares especialmente diseñados o preparados para plantas de enriquecimiento por centrifugación gaseosa

NOTA INTRODUCTORIA

Los sistemas, equipo y componentes auxiliares para una planta de enriquecimiento por centrifugación gaseosa son los que se necesitan en una instalación para alimentar UF₆ a las centrifugadoras, conectar entre sí las centrifugadoras individuales para que formen cascadas (o etapas) que conduzcan a valores progresivamente elevados de enriquecimiento y para extraer el "producto" y las "colas" del UF₆ de las centrifugadoras; también se incluye en esta categoría el equipo necesario para propulsar las centrifugadoras y para el control de la maquinaria.

Normalmente, el UF₆ se evapora a partir de su fase sólida mediante la utilización de autoclaves y se distribuye en forma gaseosa a las centrifugadoras por medio de un sistema de tuberías provisto de cabezales y configurado en cascadas. El "producto" y las "colas" pasan también por un tal sistema a trampas frías (que funcionan a unos 203 K (-70°C)), donde se condensan antes de ser transferidas a recipientes apropiados para su transporte o almacenamiento. Como una planta de enriquecimiento consiste en muchos miles de centrifugadoras conectadas en cascadas, hay también muchos kilómetros de tuberías con millares de soldaduras y una considerable repetición de configuraciones. El equipo, los componentes y los sistemas de tuberías deben construirse de modo que se obtenga un muy elevado grado de vacío y de limpieza de trabajo.

5.2.1. Sistemas de alimentación/extracción del producto y de las colas

Sistemas especialmente diseñados o preparados para el proceso, en particular:

Autoclaves (o estaciones) de alimentación utilizadas para pasar el UF₆ a las cascadas de centrifugadoras a presiones de hasta 100 kPa (15 psi) y a una tasa de 1 kg/h o más;

Desublimadores (o trampas frías) utilizados para extraer el UF₆ de las cascadas a hasta 3 kPa (0,5 psi) de presión. Los desublimadores pueden enfriarse hasta 203 K (-70°C) y calentarse hasta 343 K (70°C);

Estaciones para el "producto" y las "colas", utilizadas para introducir el UF₆ en recipientes.

Estos componentes, equipo y tuberías están enteramente construidos o recubiertos de materiales resistentes al UF₆ (véase la NOTA EXPLICATIVA de esta sección) y deben fabricarse de modo que se obtenga un grado muy elevado de vacío y de limpieza de trabajo.

5.2.2. Sistemas de tuberías con cabezales configurados en cascadas

Sistemas de tuberías y cabezales especialmente diseñados o preparados para dirigir el UF₆ en las centrifugadoras en cascada. Esta red de tuberías es normalmente del tipo de cabezal "triple" y cada centrifugadora se halla conectada a cada uno de los cabezales. Por lo tanto, su configuración se repite considerablemente. Está enteramente construida con materiales resistentes al UF₆ (véase la NOTA EXPLICATIVA de esta sección) y debe fabricarse de modo que se obtenga un grado muy elevado de vacío y de limpieza de trabajo.

5.2.3 Válvulas especiales de parada y control

Válvulas de fuelle selladas de parada y de control, manuales o automáticas, especialmente diseñadas o preparadas, fabricadas con materiales resistentes a la corrosión por el UF₆, con un diámetro de 10 mm a 160 mm, para su uso en los sistemas principal y auxiliares de plantas de enriquecimiento por centrifugación gaseosa.

5.2.4. Espectrómetros de masa para UF₆/fuentes de iones

Espectrómetros de masa magnéticos o cuadrupolares especialmente diseñados o preparados, capaces de tomar "en línea" muestras de material de alimentación, del producto o de las colas, a partir de la corriente del gas UF₆, y que posean todas las características siguientes:

- 1. Resolución unitaria para masa atómica mayor de 320;
- 2. Fuentes de iones fabricadas o revestidas con cromoníquel, metal monel o galvanoniquelado;
- 3. Fuentes de ionización por bombardeo electrónico;
- 4. Se hallan provistos de un sistema colector apropiado para el análisis isotópico.

5.2.5. Cambiadores de frecuencia

Cambiadores de frecuencia (denominados también convertidores o invertidores) especialmente diseñados o preparados para alimentar los estatores de motores según se definen en la sección 5.1.2 d); o partes componentes y subconjuntos de tales cambiadores de frecuencia que posean todas las características siguientes:

- 1. Una potencia multifásica de 600 a 2 000 Hz;
- 2. Elevada estabilidad (con control de frecuencia superior a 0,1%);
- 3. Baja distorsión armónica (menos de 2%); y
- 4. Eficiencia superior a 80%.

NOTA EXPLICATIVA

Los elementos de equipo enumerados anteriormente se encuentran en contacto directo con el gas UF₆ del proceso o se utilizan directamente para el control de las centrifugadoras y el paso del gas de unas a otras y de cascada a cascada.

Entre los materiales resistentes a la corrosión por el UF₆ se incluyen el acero inoxidable, el aluminio, las aleaciones de aluminio, el níquel y las aleaciones que contengan 60% o más de níquel.

5.3. Unidades y componentes especialmente diseñados o preparados para ser utilizados en procesos de enriquecimiento por difusión gaseosa

NOTA INTRODUCTORIA

En el método de difusión gaseosa para la separación de los isótopos de uranio, la principal unidad tecnológica consiste en una barrera porosa especial para la difusión gaseosa, un intercambiador de calor para enfriar el gas (que ha sido calentado por el proceso de compresión), válvulas de estanqueidad y de control, y tuberías. Puesto que la tecnología de difusión gaseosa utiliza el hexafluoruro de uranio (UF₆), todo el equipo, las tuberías y las superficies de instrumentos (que entran en contacto con el gas) deben fabricarse con materiales que permanezcan estables al contacto con el UF₆. Una instalación de difusión gaseosa requiere determinado número de unidades de este tipo, de modo que las cantidades pueden proporcionar indicaciones importantes respecto del uso final.

5.3.1. Barreras de difusión gaseosa

- a) Filtros finos, especialmente diseñados o preparados, porosos, cuyos poros tengan un diámetro del orden de los 100 a 1 000 Å (angstroms), un espesor de 5 mm (0,2 pulgadas) o menos, y para aquellos de forma tubular, un diámetro de 25 mm (1 pulgada) o menos, fabricados con metales, polímeros o materiales cerámicos resistentes a la acción corrosiva del UF₆, y
- b) compuestos sólidos o en polvo especialmente preparados para la manufactura de tales filtros. Estos compuestos y polvos incluyen el níquel o aleaciones que contengan un 60% o más de níquel, óxido de aluminio, o polímeros de hidrocarburos totalmente fluorados resistentes al UF₆, cuya pureza sea del 99,9% o más, y con un tamaño de partículas

inferior a 10 micrones y un alto grado de uniformidad en cuanto al tamaño de las partículas, especialmente preparados para la fabricación de barreras de difusión gaseosa.

5.3.2. Cajas de difusores gaseosos

Vasijas cilíndricas especialmente diseñadas o preparadas, herméticamente cerradas, con un diámetro superior a 300 mm (12 pulgadas) y una longitud superior a 900 mm (35 pulgadas), o vasijas rectangulares de dimensiones comparables, dotadas de una conexión de entrada y dos conexiones de salida, todas éstas con un diámetro superior a 50 mm (2 pulgadas), para contener una barrera de difusión gaseosa, hecha o recubierta con un metal resistente al UF₆ y diseñada para ser instalada en posición horizontal o vertical.

5.3.3. Compresores y sopladores de gas

Compresores axiales, centrífugos o volumétricos, o sopladores de gas especialmente diseñados o preparados, con un volumen de capacidad de succión de 1 m³/min, o más, de UF₆, y con una presión de descarga de hasta varios centenares de kPa (100 psi), diseñados para operaciones a largo plazo en contacto con UF₆ gaseoso con o sin un motor eléctrico de potencia apropiada, así como unidades autónomas de compresión o soplado de gas. Estos compresores y soplantes de gas presentan una relación de presión de entre 2:1 y 6:1 y están hechos o recubiertos de materiales resistentes al UF₆ gaseoso.

5.3.4. Obturadores para ejes de rotación

Obturadores de vacío especialmente diseñados o preparados, con conexiones selladas de entrada y de salida para asegurar la estanqueidad de los ejes que conectan los rotores de los compresores o de los sopladores de gas con los motores de propulsión para asegurar que el sistema disponga de un sellado fiable a fin de evitar que se infiltre aire en la cámara interior del compresor o del soplador de gas que está llena de UF₆. Normalmente tales obturadores están concebidos para una tasa de infiltración de gas separador inferior a 1 000 cm³/min (60 pulgadas³/min).

5.3.5. Intercambiadores de calor para enfriamiento del UF₆

Intercambiadores de calor especialmente diseñados o preparados, fabricados o recubiertos con materiales resistentes al UF $_6$ (excepto el acero inoxidable) o con cobre o cualquier combinación de esos metales, y concebidos para una tasa de cambio de presión por pérdida inferior a 10 Pa (0,0015 psi) por hora con una diferencia de presión de 100 kPa (15 psi).

5.4. Sistemas auxiliares, equipo y componentes especialmente diseñados o preparados para ser utilizados en procesos de enriquecimiento por difusión gaseosa

NOTA INTRODUCTORIA

Los sistemas auxiliares, equipo y componentes para plantas de enriquecimiento por difusión gaseosa son los sistemas necesarios para introducir el UF₆ en los elementos de difusión gaseosa y unir entre sí cada elemento para formar cascadas (o etapas) que permitan el progresivo enriquecimiento y la extracción, de dichas cascadas, del "producto" y las "colas" de UF₆. Debido al elevado carácter inercial de las cascadas de difusión, cualquier interrupción en su funcionamiento y especialmente su parada, trae consigo graves consecuencias. Por lo tanto, el mantenimiento estricto y constante del vacío en todos los sistemas tecnológicos, la protección automática contra accidentes y una muy precisa regulación automática del flujo de gas revisten la mayor importancia en una planta de difusión gaseosa. Todo ello redunda en la

necesidad de equipar la planta con un gran número de sistemas especiales de medición, regulación y control.

Normalmente el UF₆ se evapora en cilindros colocados dentro de autoclaves y se distribuye en forma gaseosa al punto de entrada por medio de tuberías de alimentación en cascada. Las corrientes gaseosas de UF₆ "producto" y "colas", que fluyen de los puntos de salida de las unidades, son conducidas por medio de tuberías hacia trampas frías o hacia unidades de compresión, donde el gas de UF₆ es licuado antes de ser introducido dentro de contenedores apropiados para su transporte o almacenamiento. Dado que una planta de enriquecimiento por difusión gaseosa se compone de un gran número de unidades de difusión gaseosa dispuestas en cascadas, éstas presentan muchos kilómetros de tubos de alimentación de cascada que a su vez presentan miles de soldaduras con un número considerable de repeticiones en su disposición. El equipo, los componentes y los sistemas de tuberías deben construirse de modo que se obtenga un muy elevado grado de vacío y de limpieza de trabajo.

5.4.1. Sistemas de alimentación/extracción del producto y de las colas

Sistemas de operaciones especialmente diseñados o preparados, capaces de funcionar a presiones de 300 kPa (45 psi) o inferiores, con inclusión de:

Autoclaves (o sistemas) de alimentación, que se emplean para introducir el UF₆ a la cascada de difusión gaseosa;

Desublimadores (o trampas frías) utilizados para extraer el UF₆ de las cascadas de difusión;

Estaciones de licuefacción en las que el UF₆ gaseoso procedente de la cascada es comprimido y enfriado para obtener UF₆ líquido;

Estaciones de "producto" o "colas" usadas para el traspaso del UF₆ hacia los contenedores.

5.4.2. Sistemas de tubería de cabecera

Sistemas de tubería y sistema de cabecera especialmente diseñados o preparados para transportar el UF₆ dentro de las cascadas de difusión gaseosa. Normalmente, dicha red de tuberías forma parte del sistema de "doble" cabecera en el que cada celda está conectada a cada una de las cabeceras.

5.4.3. Sistemas de vacío

- a) Distribuidores grandes de vacío, colectores de vacío y bombas de vacío, especialmente diseñados o preparados, cuya capacidad mínima de succión sea de 5 m³/min (175 pies³/min) o más.
- b) Bombas de vacío especialmente diseñadas para funcionar en medios de UF₆, fabricadas o recubiertas de aluminio, níquel o aleaciones cuyo componente en níquel sea superior al 60%. Dichas bombas pueden ser rotativas o impelentes, pueden tener desplazamiento y obturadores de fluorocarbono y pueden tener fluidos especiales activos.

5.4.4. Válvulas especiales de parada y control

Válvulas especiales de fuelle de cierre y de control, manuales o automáticas, especialmente diseñadas o preparadas, fabricadas con materiales resistentes al UF₆, con diámetros de 40 mm a 1 500 mm (1,5 a 59 pulgadas) para ser instaladas en los sistemas principal y auxiliares de plantas de enriquecimiento por difusión gaseosa.

5.4.5. Espectrómetros de masa para UF₆/fuentes de iones

Espectrómetros de masas magnéticos o cuadrípolos, especialmente diseñados o preparados, capaces de tomar muestras "en línea" de material de alimentación, producto o colas, de flujos de UF₆ gaseoso y que presenten todas las características siguientes:

- 1. Resolución unitaria para masa atómica mayor de 320;
- 2. Fuentes de iones fabricadas o revestidas con cromoníquel, metal monel o galvanoniquelado;
- 3. Fuentes de ionización por bombardeo electrónico;
- 4. Sistema colector apropiado de análisis isotópico.

NOTA EXPLICATIVA

Los elementos de equipo que se enumeran anteriormente entran en contacto directo con el UF₆ gaseoso o controlan de manera directa el flujo dentro de la cascada. Todas las superficies que entran en contacto directo con el gas de trabajo están fabricadas totalmente o recubiertas con materiales resistentes al UF₆. Por lo que toca a las secciones relativas a los elementos de equipo para difusión gaseosa, los materiales resistentes al efecto corrosivo del UF₆ incluyen el acero inoxidable, el aluminio, las aleaciones de aluminio, la alúmina, el níquel o las aleaciones que comprenden un 60% o más de níquel, y los polímeros de hidrocarburos totalmente fluorados resistentes al UF₆.

5.5. Sistemas, equipo y componentes especialmente diseñados o preparados para ser utilizados en plantas de enriquecimiento aerodinámico

NOTA INTRODUCTORIA

En los procesos de enriquecimiento aerodinámico, una mezcla de UF₆ gaseoso y de un gas ligero (hidrógeno o helio) después de ser comprimida se hace pasar a través de elementos de separación en los que tiene lugar la separación isotópica por generación de elevadas fuerzas centrífugas en una pared curva. Se han desarrollado con éxito dos procesos de este tipo: el proceso de toberas y el de tubos vorticiales. En ambos procesos los principales componentes de la etapa de separación son, entre otros, los recipientes cilíndricos que contienen los elementos especiales de separación (toberas o tubos vorticiales), los compresores de gas y los intercambiadores de calor para eliminar el calor de compresión. Una planta aerodinámica requiere varias de estas etapas, de modo que las cantidades pueden facilitar una indicación importante acerca del uso final. Como los procesos aerodinámicos emplean UF₆, todo el equipo, las tuberías y las superficies de instrumentos (que entran en contacto con el gas) deben estar construidos con materiales que permanezcan estables en contacto con el UF₆.

NOTA EXPLICATIVA

Los artículos enumerados en esta sección entran en contacto directo con el UF₆ gaseoso o controlan directamente el flujo en la cascada. Todas las superficies que entran en contacto con el gas del proceso están totalmente fabricadas o protegidas con materiales resistentes al UF₆. A los fines de la sección relativa a los elementos de equipo de enriquecimiento aerodinámico, los materiales resistentes a la corrosión por el UF₆ comprenden el cobre, el acero inoxidable, el aluminio, aleaciones de aluminio, níquel o aleaciones que contienen el 60% o más de níquel y polímeros de hidrocarburos totalmente fluorados resistentes al UF₆.

5.5.1. Toberas de separación

Toberas de separación y sus conjuntos especialmente diseñados o preparados. Las toberas de separación están formadas por canales curvos, con una hendidura, y un radio de curvatura inferior a 1 mm (normalmente comprendido entre 0,1 y 0,05 mm), resistentes a la corrosión por el UF₆ y en cuyo interior hay una cuchilla que separa en dos fracciones el gas que circula por la tobera.

5.5.2. Tubos vorticiales

Tubos vorticiales y sus conjuntos especialmente diseñados o preparados. Los tubos vorticiales, de forma cilíndrica o cónica, están fabricados o protegidos con materiales resistentes a la corrosión por el UF₆, su diámetro está comprendido entre 0,5 cm y 4 cm, tienen una relación longitud - diámetro de 20:1 o menos, y poseen una o varias entradas tangenciales. Los tubos pueden estar equipados con dispositivos tipo tobera en uno de sus extremos o en ambos.

NOTA EXPLICATIVA

El gas de alimentación penetra tangencialmente en el tubo vorticial por uno de sus extremos, o con ayuda de deflectores ciclónicos, o tangencialmente por numerosos orificios situados a lo largo de la periferia del tubo.

5.5.3. Compresores y sopladores de gas

Compresores axiales, centrífugos o impelentes, o sopladores de gas especialmente diseñados o preparados, fabricados o protegidos con materiales resistentes a la corrosión por el UF₆ y con una capacidad de aspiración de la mezcla de UF₆/gas portador (hidrógeno o helio) de 2 m³/min o más.

NOTA EXPLICATIVA

Estos compresores y soplantes de gas normalmente tienen una relación de compresión comprendida entre 1,2:1 y 6:1.

5.5.4. Obturadores para ejes de rotación

Obturadores para ejes de rotación especialmente diseñados o preparados, con conexiones selladas de entrada y de salida para asegurar la estanqueidad del eje que conecta el rotor del compresor o el rotor del soplador de gas con el motor de propulsión a fin de asegurar un sellado fiable para evitar las fugas del gas de trabajo o la penetración de aire o del gas de

sellado en la cámara interior del compresor o del soplador de gas que se llena con una mezcla de UF₆/gas portador.

5.5.5. Intercambiadores de calor para enfriamiento del gas

Intercambiadores de calor especialmente diseñados o preparados, fabricados o protegidos con materiales resistentes a la corrosión por el UF₆.

5.5.6. Cajas de los elementos de separación

Cajas de los elementos de separación especialmente diseñadas o preparadas, fabricadas o protegidas con materiales resistentes a la corrosión por el UF₆, para alojar los tubos vorticiales o las toberas de separación.

NOTA EXPLICATIVA

Estas cajas pueden ser recipientes cilíndricos de más de 300 mm de diámetro y de más de 900 mm de longitud, o recipientes rectangulares de dimensiones comparables, y pueden haber sido diseñadas para su instalación horizontal o vertical.

5.5.7. Sistemas de alimentación/extracción del producto y de las colas

Sistemas o equipo especialmente diseñados o preparados para plantas de enriquecimiento, fabricados o protegidos con materiales resistentes a la corrosión por el UF₆, con inclusión de:

- a) Autoclaves, hornos o sistemas de alimentación utilizados para introducir el UF₆ en el proceso de enriquecimiento;
- b) Desublimadores (o trampas frías) utilizados para extraer el UF₆ del proceso de enriquecimiento para su transferencia subsiguiente después del calentamiento;
- c) Estaciones de solidificación o licuefacción para extraer el UF₆ del proceso de enriquecimiento por compresión y conversión del UF₆ al estado líquido o sólido;
- d) Estaciones de "producto" o "colas" usadas para el traspaso del UF₆ hacia los contenedores.

5.5.8. Sistemas de tubería de cabecera

Tuberías y colectores, fabricados o protegidos con materiales resistentes a la corrosión por el UF₆, especialmente diseñados o preparados para manipular el UF₆ en el interior de las cascadas aerodinámicas. Normalmente, esta red de tuberías forma parte del sistema de "doble" cabecera en el que cada etapa o grupo de etapas está conectado a cada una de las cabeceras.

5.5.9. Bombas y sistemas de vacío

- a) Sistemas de vacío especialmente diseñados o preparados, con una capacidad de aspiración de 5 m³/min o más, y que comprenden distribuidores de vacío, colectores de vacío y bombas de vacío, y que han sido diseñados para trabajar en una atmósfera de UF₆;
- b) Bombas de vacío especialmente diseñadas o preparadas para trabajar en una atmósfera de UF₆, fabricadas o revestidas con materiales resistentes a la corrosión por el UF₆. Estas

bombas pueden estar dotadas de juntas de fluorocarbono y tener fluidos especiales de trabajo.

5.5.10. Válvulas especiales de parada y control

Válvulas de fuelle de parada y de control, manuales o automáticas, especialmente diseñadas o preparadas, fabricadas con materiales resistentes a la corrosión por el UF₆, con un diámetro de 40 mm a 1 500 mm, para su instalación en los sistemas principal y auxiliares de plantas de enriquecimiento aerodinámico.

5.5.11. Espectrómetros de masa para UF₆/fuentes de iones

Espectrómetros de masas magnéticos o cuadrupolares especialmente diseñados o preparados, capaces de tomar "en línea" de las corrientes de UF₆ gaseoso, muestras de material de alimentación, del "producto" o de las "colas", y que poseen todos las siguientes características:

- 1. Resolución unitaria para la unidad de masa superior a 320;
- Fuentes de iones fabricadas o revestidas con cromoníquel, metal monel o galvanoniquelado;
- 3. Fuentes de ionización por bombardeo electrónico;
- 4. Sistema colector apropiado de análisis isotópico.

5.5.12. Sistemas de separación UF₆/gas portador

Sistemas especialmente diseñados o preparados para separar el UF₆ del gas portador (hidrógeno o helio).

NOTA EXPLICATIVA

Estos sistemas han sido diseñados para reducir el contenido de UF₆ del gas portador a 1 ppm o menos y pueden comprender el equipo siguiente:

- a) Intercambiadores de calor criogénicos y crioseparadores capaces de alcanzar temperaturas de -120°C o inferiores;
- b) Unidades de refrigeración criogénicas capaces de alcanzar temperaturas de -120°C o inferiores; o
- c) Toberas de separación o tubos vorticiales para separar el UF₆ del gas portador; o
- d) Trampas frías para el UF₆ capaces de alcanzar temperaturas de -20°C o inferiores.

5.6. Sistemas, equipo y componentes especialmente diseñados o preparados para su utilización en plantas de enriquecimiento por intercambio químico o por intercambio iónico

NOTA INTRODUCTORIA

Las diferencias mínimas de masa entre los isótopos de uranio ocasionan pequeños cambios en los equilibrios de las reacciones químicas, fenómeno que puede aprovecharse para la separación de los isótopos. Se han desarrollado con éxito dos procesos: intercambio químico líquido - líquido e intercambio iónico sólido-líquido.

En el proceso de intercambio químico líquido - líquido, las fases líquidas inmiscibles (acuosa y orgánica) se ponen en contacto por circulación en contracorriente para obtener un efecto de cascada correspondiente a miles de etapas de separación. La fase acuosa está compuesta por cloruro de uranio en solución en ácido clorhídrico; la fase orgánica está constituida por un agente de extracción que contiene cloruro de uranio en un solvente orgánico. Los contactores empleados en la cascada de separación pueden ser columnas de intercambio líquido - líquido (por ejemplo, columnas pulsadas dotadas de placas - tamiz) o contactores centrífugos líquido - líquido. En cada uno de ambos extremos de la cascada de separación se necesita una conversión química (oxidación y reducción) para permitir el reflujo. Una importante preocupación con respecto al diseño es evitar la contaminación de las corrientes de proceso por ciertos iones metálicos. Por tanto, se utilizan tuberías y columnas de plástico, revestidas de plástico (comprendidos polímeros de fluorocarbonos) y/o revestidas de vidrio.

En el proceso de intercambio iónico sólido - líquido, el enriquecimiento se consigue por adsorción/desorción del uranio en un adsorbente o resina de intercambio iónico y de acción muy rápida. Se hace pasar una solución de uranio contenida en ácido clorhídrico y otros agentes químicos a través de columnas cilíndricas de enriquecimiento que contienen lechos de relleno formado por el adsorbente. Para conseguir un proceso continuo es necesario un sistema de reflujo para liberar el uranio del adsorbente y reinyectarlo en el flujo líquido de modo que puedan recogerse el "producto" y las "colas". Esto se realiza con ayuda de agentes químicos adecuados de reducción/oxidación que son regenerados por completo en circuitos externos independientes y que pueden ser regenerados parcialmente dentro de las propias columnas de separación isotópica. La presencia de soluciones de ácido clorhídrico concentrado caliente obliga a fabricar o proteger el equipo con materiales especiales resistentes a la corrosión.

5.6.1. Columnas de intercambio líquido - líquido (intercambio químico)

Columnas de intercambio líquido - líquido en contracorriente con aportación de energía mecánica (es decir, columnas pulsadas de placas - tamiz, columnas de placas de movimiento alternativo y columnas dotadas de turbomezcladores internos), especialmente diseñadas o preparadas para el enriquecimiento del uranio utilizando el proceso de intercambio químico. Para que sean resistentes a la corrosión por las soluciones de ácido clorhídrico concentrado, estas columnas y su interior se fabrican o se revisten con materiales plásticos adecuados (por ejemplo, polímeros de fluorocarbonos) o vidrio. Las columnas han sido diseñadas para que el tiempo de residencia correspondiente a una etapa sea corto (30 segundos o menos).

5.6.2. Contactores centrífugos líquido - líquido (intercambio químico)

Contactores centrífugos líquido - líquido especialmente diseñados o preparados para el enriquecimiento del uranio utilizando procesos de intercambio químico. En estos contactores, la dispersión de las corrientes orgánica y acuosa se consigue por rotación y la separación de las fases con ayuda de una fuerza centrífuga. Para hacerlos resistentes a la corrosión por las soluciones de ácido clorhídrico concentrado, los contactores se fabrican o se revisten con materiales plásticos adecuados (por ejemplo, polímeros de fluorocarbonos) o se revisten con vidrio. Los contactores centrífugos han sido concebidos para que el tiempo de residencia correspondiente a una etapa sea corto (30 segundos o menos).

5.6.3. Equipo y sistemas de reducción del uranio (intercambio químico)

a) Celdas de reducción electroquímica especialmente diseñadas o preparadas para reducir el uranio de un estado de valencia a otro inferior para su enriquecimiento por el proceso de intercambio químico. Los materiales de las celdas en contacto con las soluciones de proceso deben ser resistentes a la corrosión por soluciones de ácido clorhídrico concentrado.

NOTA EXPLICATIVA

El compartimiento catódico de la celda debe ser diseñado de modo que el uranio no pase a un estado de valencia más elevado por reoxidación. Para mantener el uranio en el compartimiento catódico, la celda debe poseer una membrana de diafragma inatacable fabricada con un material especial de intercambio catiónico. El cátodo consiste en un conductor sólido adecuado, por ejemplo, grafito.

b) Sistemas situados en el extremo de la cascada donde se recupera el producto especialmente diseñados o preparados para separar el U⁴⁺ de la corriente orgánica, ajustar la concentración de ácido y alimentar las celdas de reducción electroquímica.

NOTA EXPLICATIVA

Estos sistemas están formados por equipo de extracción por solvente para separar el U⁴⁺ de la corriente orgánica a fin de introducirlo en la solución acuosa, equipo de evaporación y/o de otra índole para ajustar y controlar el pH de la solución y bombas u otros dispositivos de transferencia para alimentar las celdas de reducción electroquímica. Una de las principales preocupaciones en cuanto al diseño es evitar la contaminación de la corriente acuosa por ciertos iones metálicos. En consecuencia, aquellas partes del sistema que están en contacto con la corriente de trabajo se fabrican o protegen con materiales adecuados (por ejemplo, vidrio, fluorocarburos polímeros, sulfato de polifenilo, poliéter sulfone y grafito impregnado con resina).

5.6.4. Sistemas de preparación de la alimentación (intercambio químico)

Sistemas especialmente diseñados o preparados para producir soluciones de cloruro de uranio de elevada pureza destinadas a las plantas de separación de los isótopos de uranio por intercambio químico.

NOTA EXPLICATIVA

Estos sistemas comprenden equipo de purificación por disolución, extracción por solvente y/o intercambio iónico, y celdas electrolíticas para reducir el uranio U⁶⁺ o U⁴⁺ a U³⁺. Estos

sistemas producen soluciones de cloruro de uranio que sólo contienen algunas partes por millón de impurezas metálicas, por ejemplo, cromo, hierro, vanadio, molibdeno y otros cationes bivalentes o de valencia múltiple más elevada. Entre los materiales de fabricación de partes del sistema de tratamiento del U³⁺ de elevada pureza figuran el vidrio, los polímeros de fluorocarbonos, el sulfato de polifenilo o el poliéter sulfone y el grafito con un revestimiento de plástico e impregnado con resina.

5.6.5. Sistemas de oxidación del uranio (intercambio químico)

Sistemas especialmente diseñados o preparados para oxidar el U^{3+} en U^{4+} a fin de reintroducirlo en la cascada de separación isotópica en el proceso de enriquecimiento por intercambio químico.

NOTA EXPLICATIVA

Estos sistemas pueden comprender el equipo siguiente:

- a) Equipo para poner en contacto el cloro y el oxígeno con el efluente acuoso procedente del equipo de separación isotópica y extraer el U⁴⁺ resultante a fin de introducirlo en la corriente orgánica empobrecida procedente de la extremidad de la cascada;
- b) Equipo para separar el agua del ácido clorhídrico de modo que el agua y el ácido clorhídrico concentrado puedan ser reintroducidos en el proceso en lugares adecuados.

5.6.6. Resinas de intercambio iónico/adsorbentes de reacción rápida (intercambio iónico)

Resinas de intercambio iónico o adsorbentes de reacción rápida especialmente diseñados o preparados para el enriquecimiento del uranio por el proceso de intercambio iónico, en particular resinas macrorreticulares porosas y/o estructuras peliculares en las que los grupos de intercambio químico activos están limitados a un revestimiento superficial en un soporte poroso inactivo, y otras estructuras compuestas en forma adecuada, sobre todo partículas o fibras. Estas resinas de intercambio iónico/adsorbentes tienen un diámetro de 0,2 mm o menor y deben ser quimiorresistentes a soluciones de ácido clorhídrico concentrado y lo bastante fisicorresistentes para no experimentar una degradación en las columnas de intercambio. Las resinas/adsorbentes han sido diseñados especialmente para conseguir una cinética de intercambio de los isótopos del uranio muy rápida (el tiempo de semirreacción es inferior a 10 segundos) y pueden trabajar a temperaturas comprendidas entre 100° C y 200° C.

5.6.7. Columnas de intercambio iónico (intercambio iónico)

Columnas cilíndricas de más de 1 000 mm de diámetro que contienen lechos de relleno de resina de intercambio iónico/adsorbente, especialmente diseñadas o preparadas para el enriquecimiento del uranio por intercambio iónico. Estas columnas están fabricadas o protegidas con materiales (por ejemplo, titanio o plásticos de fluorocarburo) resistentes a la corrosión por soluciones de ácido clorhídrico concentrado y pueden trabajar a temperaturas comprendidas entre 100° C y 200° C y presiones superiores a 0,7 MPa (102 psi).

5.6.8. Sistemas de reflujo (intercambio iónico)

- a) Sistemas de reducción química o electroquímica especialmente diseñados o preparados para regenerar el agente o los agentes de reducción química utilizado o utilizados en las cascadas de enriquecimiento del uranio por intercambio iónico;
- b) Sistemas de oxidación química o electroquímica especialmente diseñados o preparados para regenerar el agente o agentes de oxidación química utilizado o utilizados en las cascadas de enriquecimiento del uranio por intercambio iónico.

NOTA EXPLICATIVA

El proceso de enriquecimiento por intercambio iónico puede utilizar, por ejemplo, el titanio trivalente (Ti³⁺) como catión reductor, caso en el cual el sistema de reducción regeneraría el Ti³⁺ por reducción del Ti⁴⁺.

El proceso puede utilizar, por ejemplo, hierro trivalente (Fe³⁺) como oxidante, caso en el cual el sistema de oxidación regeneraría el Fe³⁺ por oxidación del Fe²⁺.

5.7. Sistemas, equipo y componentes especialmente diseñados o preparados para su utilización en plantas de enriquecimiento por láser

NOTA INTRODUCTORIA

Los actuales sistemas de enriquecimiento por láser se clasifican en dos categorías: aquél en que el medio en que se aplica el proceso es vapor atómico de uranio y aquél en que es vapor de un compuesto de uranio. La nomenclatura corriente de los procesos es la siguiente: primera categoría - separación isotópica por láser en vapor atómico (AVLIS o SILVA); segunda categoría - separación isotópica molecular por láser (MLIS o MOLIS - SILMO) y reacción química por activación láser isotópicamente selectiva (CRISLA). Los sistemas, equipo y componentes de las plantas de enriquecimiento por láser comprenden: a) dispositivos de alimentación de vapor de uranio metálico (para la fotoionización selectiva) o dispositivos de alimentación de vapor de un compuesto del uranio (para la fotodisociación o activación química); b) dispositivos para recoger el uranio metálico enriquecido o empobrecido como "producto" y "colas" en la primera categoría, y dispositivos para recoger los compuestos disociados o activos como "producto" y material no modificado como "colas" en la segunda categoría; c) sistemas láser del proceso para excitar selectivamente la especie uranio 235; y d) equipo para la preparación de la alimentación y la conversión del producto. Debido a la complejidad de la espectroscopia de los átomos y compuestos del uranio, quizás sea necesario incorporar cierto número de tecnologías láser que ya están disponibles.

NOTA EXPLICATIVA

Muchos de los artículos enumerados en esta sección entran directamente en contacto con el uranio metálico vaporizado o líquido, ya sea con un gas del proceso formado por UF₆ o por una mezela de UF₆ con otros gases. Todas las superficies que entran en contacto con el uranio o con el UF₆ están totalmente fabricadas o protegidas con materiales resistentes a la corrosión. A los fines de la sección relativa a los artículos para el enriquecimiento por láser, los materiales resistentes a la corrosión por el uranio metálico o las aleaciones de uranio vaporizados o líquidos son el tántalo y el grafito revestido con itrio; entre los materiales resistentes a la corrosión por el UF₆ figuran el cobre, el acero inoxidable, el aluminio, las aleaciones de aluminio, el níquel o las aleaciones que contengan el 60% o más de níquel y los polímeros de hidrocarburos totalmente fluorados resistentes al UF₆.

5.7.1. Sistemas de vaporización del uranio (SILVA)

Sistemas de vaporización del uranio especialmente diseñados o preparados que contienen cañones de haz electrónico de elevada potencia en franja o barrido, y que proporcionan una potencia en el blanco de más de 2,5 kW/cm.

5.7.2. Sistemas de manipulación del uranio metálico líquido (SILVA)

Sistemas de manipulación de metales líquidos especialmente diseñados o preparados para el uranio o las aleaciones de uranio fundidos, que comprenden crisoles y equipos de enfriamiento de los crisoles.

NOTA EXPLICATIVA

Los crisoles y otras partes del sistema que puedan entrar en contacto con el uranio o aleaciones de uranio fundidos están fabricados o protegidos con materiales de resistencia adecuada a la corrosión y al calor. Entre estos materiales cabe citar el tántalo, el grafito revestido con itrio, el grafito revestido con otros óxidos de tierras raras (véase el documento INFCIRC/254/Part 2, (enmendado)) o mezclas de estas sustancias.

5.7.3. Conjuntos colectores del "producto" y "colas" del uranio metálico (SILVA)

Conjuntos colectores del "producto" y "colas" especialmente diseñados o preparados para el uranio metálico en estado líquido o sólido.

NOTA EXPLICATIVA

Los componentes de estos conjuntos se fabrican o protegen con materiales resistentes al calor y a la corrosión por el uranio metálico vaporizado o líquido (por ejemplo, tántalo o grafito revestido con itrio) y pueden comprender tuberías, válvulas, accesorios, "canalones", alimentadores directos, intercambiadores de calor y placas colectoras utilizadas en los métodos de separación magnética, electrostática y de otra índole.

5.7.4. Cajas de módulo separador (SILVA)

Recipientes rectangulares o cilíndricos especialmente diseñados o preparados para contener la fuente de vapor de uranio metálico, el cañón de haz electrónico y los colectores del "producto" y de las "colas".

NOTA EXPLICATIVA

Estas cajas poseen numerosos orifícios para los conductos de alimentación eléctrica y de agua, ventanas para los haces de láser, conexiones de las bombas de vacío y el instrumental de diagnóstico y vigilancia. Están dotadas de medios de abertura y cierre para poder reajustar los componentes internos.

5.7.5. Toberas de expansión supersónica (SILMO)

Toberas de expansión supersónica, resistentes a la corrosión por el UF₆, especialmente diseñadas o preparadas para enfriar mezclas de UF₆ y el gas portador a 150 K o menos, y que son resistentes a la corrosión por UF₆.

5.7.6. Colectores del producto (pentafluoruro de uranio) (SILMO)

Colectores de pentafluoruro de uranio (UF₅) sólido especialmente diseñados o preparados y formados por colectores de filtro, impacto o ciclón, o sus combinaciones, y que son resistentes a la corrosión en un medio de UF₅/UF₆.

5.7.7. Compresores de UF₆/gas portador (SILMO)

Compresores especialmente diseñados o preparados para mezclas de UF₆/gas portador, destinados a un funcionamiento de larga duración en un medio de UF₆. Los componentes de estos compresores que entran en contacto con el gas del proceso están fabricados o protegidos con materiales resistentes a la corrosión por el UF₆.

5.7.8. Obturadores para ejes de rotación (SILMO)

Obturadores para ejes de rotación especialmente diseñados o preparados, con conexiones selladas de entrada y salida, para asegurar la estanqueidad de los ejes que conectan los rotores de los compresores con los motores de propulsión a fin de garantizar que el sistema disponga de un sellado fiable y evitar los escapes del gas de proceso o la penetración de aire o de gas de estanqueidad en la cámara interior del compresor que se llena con una mezcla de UF_6/gas portador.

5.7.9. Sistemas de fluoración (SILMO)

Sistemas especialmente diseñados o preparados para fluorar el UF₅ (sólido) en UF₆ (gaseoso).

NOTA EXPLICATIVA

Estos sistemas han sido diseñados para fluorar el polvo de UF_5 y recoger el UF_6 en contenedores o reintroducirlo en las unidades SILMO para su enriquecimiento más elevado. En un método, la fluoración puede realizarse dentro del sistema de separación isotópica, y la reacción y la recuperación se hacen directamente en los colectores del "producto". En el otro método, el polvo de UF_5 puede ser retirado de los colectores del "producto" para introducirlo en una vasija adecuada de reacción (por ejemplo, un reactor de lecho fluidizado, un reactor helicoidal o una torre de llama) para la fluoración. En ambos métodos se utiliza equipo de almacenamiento y transferencia del flúor (u otros agentes adecuados de fluoración), y de recogida y transferencia del UF_6 .

5.7.10. Espectrómetros de masas para UF₆/fuentes de iones (SILMO)

Espectrómetros de masas magnéticos o cuadrupolares especialmente diseñados o preparados, capaces de tomar "en línea" muestras de material de alimentación, "productos" o "colas" de las corrientes de UF₆ gaseoso, y que poseen todas las características siguientes:

- 1. Resolución unitaria para la unidad de masa superior a 320;
- 2. Fuentes de iones fabricadas o revestidas con cromoníquel, metal monel o galvanoniquelado;
- 3. Fuentes de ionización por bombardeo electrónico;
- 4. Sistema colector apropiado de análisis isotópico.

5.7.11. Sistemas de alimentación/sistemas de retirada del producto y de las colas (SILMO)

Sistemas o equipo especialmente diseñados o preparados para plantas de enriquecimiento, fabricados o protegidos con materiales resistentes a la corrosión por el UF₆, con inclusión de:

- a) Autoclaves, hornos o sistemas de alimentación utilizados para introducir el UF₆ en el proceso de enriquecimiento;
- b) Desublimadores (o trampas frías) utilizados para extraer el UF₆ del proceso de enriquecimiento para su transferencia subsiguiente después del calentamiento;
- c) Estaciones de solidificación o licuefacción para extraer el UF₆ del proceso de enriquecimiento por compresión y conversión del UF₆ al estado líquido o sólido;
- d) Estaciones de "producto" o "colas" usadas para el traspaso del UF₆ hacia los contenedores.

5.7.12. Sistemas de separación UF₆/gas portador (SILMO)

Sistemas especialmente diseñados o preparados para separar el UF₆ del gas portador. El gas portador puede ser nitrógeno, argón u otro gas.

NOTA EXPLICATIVA

Estos sistemas pueden comprender el equipo siguiente:

- a) Intercambiadores de calor criogénicos o crioseparadores capaces de alcanzar temperaturas de -120°C o inferiores;
- b) Unidades de refrigeración criogénicas capaces de alcanzar temperaturas de -120°C o inferiores; o
- c) Trampas frías para el UF₆ capaces de alcanzar temperaturas de -20°C o inferiores.

5.7.13. Sistemas por láser (SILVA, SILMO y CRISLA)

Láseres o sistemas laséricos especialmente diseñados o preparados para la separación de los isótopos del uranio.

NOTA EXPLICATIVA

Los láseres y los componentes laséricos de importancia en procesos de enriquecimiento por láser comprenden los enumerados en el documento INFCIRC/254/Part 2 (enmendado). El sistema lasérico para el proceso SILVA está formado normalmente por dos láseres: un láser de vapor de cobre y un láser de colorante. El sistema lasérico para SILMO está formado normalmente por un láser de CO₂ o un láser de excímero y una celda óptica de multipasos con espejos giratorios en ambos extremos. En ambos procesos los láseres o sistemas laséricos deben estar dotados de un estabilizador de frecuencia espectral para poder funcionar durante períodos prolongados.

5.8. Sistemas, equipos y componentes especialmente diseñados o preparados para su utilización en plantas de enriquecimiento por separación en un plasma

NOTA INTRODUCTORIA

En el proceso de separación en un plasma, un plasma de iones de uranio atraviesa un campo eléctrico acordado a la frecuencia de resonancia de los iones ²³⁵U, de modo que estos últimos absorban preferentemente la energía y aumente el diámetro de sus órbitas helicoidales. Los iones que recorren una trayectoria de gran diámetro son atrapados y se obteniene un producto enriquecido en ²³⁵U. El plasma, creado por ionización del vapor de uranio, está contenido en una cámara de vacío sometida a un campo magnético de elevada intensidad producido por un imán superconductor. Los principales sistemas tecnológicos del proceso comprenden el sistema de generación del plasma de uranio, el módulo separador con el imán superconductor (véase el documento INFCIRC/254/Part 2 (enmendado)), y los sistemas de extracción del metal para recoger el "producto" y las "colas".

5.8.1. Fuentes de energía de hiperfrecuencia y antenas

Fuentes de energía de hiperfrecuencia y antenas especialmente diseñadas o preparadas para producir o acelerar iones y que poseen las siguientes características: frecuencia superior a 30 GHz y potencia media a la salida superior a 50 kW para la producción de iones.

5.8.2. Bobinas excitadoras de iones

Bobinas excitadoras de iones de radiofrecuencia especialmente diseñadas o preparadas para frecuencias superiores a 100 kHz y capaces de soportar una potencia media superior a 40 kW.

5.8.3. Sistemas generadores de plasma de uranio

Sistemas especialmente diseñados o preparados para generar plasma de uranio, que pueden contener cañones de electrones de gran potencia en barrido o en franja, y que proporcionan una potencia en el blanco superior a 2,5 kW/cm.

5.8.4. Sistemas de manipulación del uranio metálico líquido

Sistemas de manipulación de metales líquidos especialmente diseñados o preparados para el uranio o las aleaciones de uranio fundidos, que comprenden crisoles y equipos de enfriamiento de los crisoles.

NOTA EXPLICATIVA

Los crisoles y otras partes del sistema que puedan entrar en contacto con el uranio o aleaciones de uranio fundidos están fabricados o protegidos con materiales de resistencia adecuada a la corrosión y al calor. Entre estos materiales cabe citar el tántalo, el grafito revestido con itrio, el grafito revestido con otros óxidos de tierras raras (véase el documento INFCIRC/254/Part 2, (enmendado)) o mezclas de estas sustancias.

5.8.5. Conjuntos colectores del "producto" y de las "colas" de uranio metálico

Conjuntos colectores del "producto" y de las "colas" especialmente diseñados o preparados para el uranio metálico en estado sólido. Estos conjuntos colectores están fabricados o protegidos con materiales resistentes al calor y a la corrosión por el vapor de uranio metálico, por ejemplo, tántalo o grafito revestido con itrio.

5.8.6. Cajas de módulos separadores

Recipientes cilíndricos especialmente diseñados o preparados para ser utilizados en plantas de enriquecimiento por separación en un plasma y destinados a alojar una fuente de plasma de uranio, una bobina excitadora de radiofrecuencia y los colectores del "producto" y de las "colas".

NOTA EXPLICATIVA

Estas cajas poseen numerosos orificios para conductos de alimentación eléctrica, conexiones de las bombas de difusión e instrumental de diagnóstico y vigilancia. Están dotadas de medios de abertura y cierre para poder reajustar los componentes internos y están fabricadas con un material no magnético adecuado, por ejemplo, acero inoxidable.

5.9. Sistemas, equipo y componentes especialmente diseñados o preparados para su utilización en plantas de enriquecimiento electromagnético

NOTA INTRODUCTORIA

En el proceso electromagnético, los iones de uranio metálico producidos por ionización de una sal (normalmente UCl₄) después de ser acelerados atraviesan un campo electromagnético, que hace que los iones de los diferentes isótopos sigan trayectorias diferentes. Los principales componentes de un separador electromagnético de isótopos son: un campo magnético causante de la desviación del haz iónico y de la separación de los isótopos, una fuente de iones con su sistema de aceleración y un sistema colector para recoger los iones separados. Los sistemas auxiliares del proceso comprenden la alimentación del imán, la alimentación de alta tensión de la fuente de iones, la instalación de vacío e importantes sistemas de manipulación química para la recuperación del producto y la depuración/reciclado de los componentes.

5.9.1. Separadores electromagnéticos de isótopos

Separadores electromagnéticos de isótopos especialmente diseñados o preparados para la separación de los isótopos de uranio, y equipo y componentes para esta actividad, en particular:

a) Fuentes de iones

Fuentes de iones de uranio, únicas o múltiples, especialmente diseñadas o preparadas, que comprenden una fuente de vapor, un ionizador y un acelerador de haz, fabricadas con materiales adecuados, como el grafito, el acero inoxidable o el cobre, y capaces de producir una corriente de ionización total de 50 mA o superior.

b) Colectores de iones

Placas colectoras formadas por dos o más ranuras y bolsas especialmente diseñadas o preparadas para recoger haces de iones de uranio enriquecidos y empobrecidos, y fabricadas con materiales adecuados, como el grafito o el acero inoxidable.

c) Cajas de vacío

Cajas de vacío especialmente diseñadas o preparadas para los separadores electromagnéticos del uranio, fabricadas con materiales no magnéticos adecuados, como el acero inoxidable, y capaces de funcionar a presiones de 0,1 Pa o inferiores.

NOTA EXPLICATIVA

Las cajas, diseñadas para contener las fuentes de iones, las placas colectoras y las camisas de agua, están dotadas de medios para conectar las bombas de difusión, los dispositivos de abertura y cierre, y la reinstalación de estos componentes.

d) Piezas polares de los imanes

Piezas polares de los imanes especialmente diseñadas o preparadas, de diámetro superior a 2 m, utilizadas para mantener un campo magnético constante en el interior del separador electromagnético de isótopos y transferir el campo magnético entre separadores contiguos.

5.9.2. Alimentación de alta tensión

Alimentación de alta tensión especialmente diseñada o preparada para las fuentes de iones y que tiene todas las características siguientes: capaz de producir de modo continuo, durante un período de 8 horas, una tensión a la salida de 20 000 V o superior, con una intensidad a la salida de 1 A o superior y una variación de tensión inferior a 0,01%.

5.9.3. Alimentación eléctrica de los imanes

Alimentación con corriente continua de los imanes especialmente diseñada o preparada y que tiene todas las características siguientes: capaz de producir de modo continuo, durante un período de ocho horas, una corriente a la salida de intensidad de 500 A o superior a una tensión de 100 V o superior, con variaciones de intensidad y de tensión inferiores a 0,01%.

6. Plantas de producción o concentración de agua pesada, deuterio y compuestos de deuterio y equipo especialmente diseñado o preparado para ese fin

NOTA INTRODUCTORIA

El agua pesada puede producirse por varios procesos. No obstante, los dos procesos que han demostrado ser viables desde el punto de vista comercial son el proceso de intercambio agua - sulfuro de hidrógeno (proceso GS) y el proceso de intercambio amoniaco - hidrógeno.

El proceso GS se basa en el intercambio de hidrógeno y deuterio entre el agua y el sulfuro de hidrógeno en una serie de torres que funcionan con su sección superior en frío y su sección inferior en caliente. En las torres, el agua baja mientras el sulfuro de hidrógeno gaseoso circula en sentido ascendente. Se utiliza una serie de bandejas perforadas para favorecer la mezcla entre el gas y el agua. El deuterio pasa al agua a baja temperatura y al sulfuro de hidrógeno a alta temperatura. El gas o el agua, enriquecido en deuterio, se extrae de las torres de la primera etapa en la confluencia de las secciones caliente y fría y se repite el proceso en torres de etapas subsiguientes. El producto de la última etapa, o sea el agua enriquecida hasta un 30% en deuterio, se envía a una unidad de destilación para producir agua pesada utilizable en reactores, es decir, óxido de deuterio al 99,75%.

El proceso de intercambio amoniaco - hidrógeno permite extraer deuterio a partir de un gas de síntesis por contacto con amoniaco líquido en presencia de un catalizador. El gas de síntesis se envía a las torres de intercambio y posteriormente al convertidor de amoniaco. Dentro de las torres el gas circula en sentido ascendente mientras que el amoniaco líquido lo hace en sentido inverso. El deuterio se extrae del hidrógeno del gas de síntesis y se concentra en el amoniaco. El amoniaco pasa entonces a un fraccionador de amoniaco en la parte inferior de la torre mientras que el gas sube a un convertidor de amoniaco en la parte superior. El enriquecimiento tiene lugar en etapas ulteriores y, mediante destilación final, se obtiene agua pesada para uso en reactores. El gas de síntesis de alimentación puede obtenerse en una planta de amoniaco que, a su vez, puede construirse asociada a una planta de agua pesada por intercambio amoniaco - hidrógeno. El proceso de intercambio amoniaco - hidrógeno también puede utilizar agua común como fuente de alimentación de deuterio.

Gran parte de los artículos del equipo esencial de las plantas de producción de agua pesada por el proceso GS o el proceso de intercambio amoniaco - hidrógeno es de uso común en varios sectores de las industrias química y petrolera. Esto sucede en particular en las pequeñas plantas que utilizan el proceso GS. Ahora bien, solo algunos de estos artículos pueden obtenerse en el comercio normal. Los procesos GS y de intercambio amoniaco - hidrógeno exigen la manipulación de grandes cantidades de fluidos inflamables, corrosivos y tóxicos a presiones elevadas. Por consiguiente, cuando se establece el diseño y las normas de funcionamiento de plantas y equipo que utilizan estos procesos, es necesario prestar cuidadosa atención a la selección de materiales y sus especificaciones para asegurar una prolongada vida útil con elevados niveles de seguridad y fiabilidad. La elección de la escala está principalmente en función de los aspectos económicos y de las necesidades. Así pues, gran parte del equipo se preparará como solicite el cliente.

Finalmente, cabe señalar que, tanto en el proceso GS como en el de intercambio amoniaco - hidrógeno, elementos de equipo que de manera independiente no están diseñados o preparados especialmente para la producción de agua pesada, pueden montarse en sistemas que sí lo están especialmente para producir agua pesada. A título de ejemplo cabe citar el sistema de producción con catalizador que se utiliza en el proceso de intercambio amoniaco - hidrógeno y los sistemas de destilación de agua empleados para la concentración final del agua pesada utilizable en reactores.

Los elementos de equipo que están especialmente diseñados o preparados para la producción de agua pesada, ya sea por el proceso de intercambio agua - sulfuro de hidrógeno o por el proceso de intercambio amoniaco - hidrógeno, comprenden los siguientes elementos:

6.1. Torres de intercambio agua - sulfuro de hidrógeno

Torres de intercambio fabricadas con acero al carbono fino (por ejemplo ASTM A516) con diámetros de 6 m (20 pies) a 9 m (30 pies), capaces de funcionar a presiones superiores o iguales a 2 MPa (300 psi) y con un sobreespesor de corrosión de 6 mm o superior, especialmente diseñadas o preparadas para producción de agua pesada por el proceso de intercambio agua - sulfuro de hidrógeno.

6.2. Sopladores y compresores

Sopladores o compresores centrífugos, de etapa única y baja presión (es decir, 0.2 MPa o 30 psi), para la circulación del sulfuro de hidrógeno gaseoso (es decir, gas que contiene más de 70% de H_2S) especialmente diseñados o preparados para producción de agua pesada por el proceso de intercambio agua - sulfuro de hidrógeno. Estos sopladores o compresores tienen una capacidad de caudal superior o igual a $56 \text{ m}^3/\text{segundo}$ (120 000 SCFM) al funcionar a presiones de aspiración superiores o iguales a 1.8 MPa (260 psi), y tienen juntas diseñadas para trabajar en un medio húmedo con H_2S .

6.3. Torres de intercambio amoniaco - hidrógeno

Torres de intercambio amoniaco - hidrógeno de altura superior o igual a 35 m (114,3 pies) y diámetro de 1,5 m (4,9 pies) a 2,5 m (8,2 pies), capaces de funcionar a presiones mayores de 15 MPa (2 225 psi), especialmente diseñadas o preparadas para producción de agua pesada por el proceso de intercambio amoniaco - hidrógeno. Estas torres también tienen al menos una abertura axial, de tipo pestaña, del mismo diámetro que la parte cilíndrica, a través de la cual pueden insertarse o extraerse las partes internas.

6.4. Partes internas de la torre y bombas de etapa

Partes internas de la torre y bombas de etapa especialmente diseñadas o preparadas para torres de producción de agua pesada por el proceso de intercambio amoniaco - hidrógeno. Las partes internas de la torre comprenden contactores de etapa especialmente diseñados para favorecer un contacto íntimo entre el gas y el líquido. Las bombas de etapa comprenden bombas sumergibles especialmente diseñadas para la circulación del amoniaco líquido en una etapa de contacto dentro de las torres.

6.5. Fraccionadores de amoniaco

Fraccionadores de amoniaco con una presión de funcionamiento superior o igual a 3 MPa (450 psi) especialmente diseñados o preparados para la producción de agua pesada por el proceso de intercambio amoniaco - hidrógeno.

6.6. Analizadores de absorción infrarroja

Analizadores de absorción infrarroja capaces de realizar análisis en línea de la razón hidrógeno/deuterio cuando las concentraciones de deuterio son superiores o iguales a 90%.

6.7. Quemadores catalíticos

Quemadores catalíticos para la conversión del deuterio gaseoso enriquecido en agua pesada especialmente diseñados o preparados para la producción de agua pesada por el proceso de intercambio amoniaco - hidrógeno.

6.8. Sistemas completos de enriquecimiento en deuterio de agua pesada o columnas para esta operación

Sistemas completos de enriquecimiento en deuterio del agua pesada, o columnas para esta operación, especialmente concebidos o preparados para elevar la concentración en deuterio del agua pesada hasta hacerla utilizable en reactores.

NOTA EXPLICATIVA

Estos sistemas, que utilizan generalmente la destilación de agua para separar el agua pesada del agua ligera, están especialmente concebidos o preparados para producir agua pesada utilizable en reactores (es decir, normalmente óxido de deuterio al 99,75%) a partir de agua pesada de alimentación de menor concentración.

7. Plantas de conversión de uranio y plutonio para ser utilizadas en la fabricación de elementos combustibles y la separación de isótopos del uranio según se define en las secciones 4 y 5 respectivamente, y equipo especialmente diseñado o preparado para ese fin

EXPORTACIONES

La exportación del conjunto completo de partidas principales comprendidas dentro de este concepto tendrá lugar únicamente de conformidad con los procedimientos expuestos en las Directrices. Todo el conjunto de plantas, sistemas y equipo especialmente diseñado o preparado dentro de este concepto podrá utilizarse en la elaboración, producción o utilización de material fisionable especial.

7.1. Plantas de conversión del uranio y equipo especialmente diseñado o preparado para ese fin

NOTA INTRODUCTORIA

Los diferentes sistemas y plantas de conversión del uranio permiten realizar una o varias transformaciones de una de las especies químicas del uranio en otra, incluso: conversión de concentrados de mineral uranífero en UO₃, conversión de UO₃ en UO₂, conversión de óxidos de uranio en UF₄, UF₆ o Ucl₄, conversión de UF₄ en UF₆, conversión de UF₆ en UF₄, conversión de UF₄ en uranio metálico y conversión de fluoruros de uranio en UO₂. Muchos de los elementos de equipo fundamentales de las plantas de conversión del uranio son comunes a varios sectores de la industria química. Por ejemplo, entre los tipos de equipo que se utilizan en estos procesos cabe citar: hornos, hornos rotatorios, reactores de lecho fluidizado, reactores de torres de llama, centrifugadoras en fase líquida, columnas de destilación y columnas de extracción líquido - líquido. Sin embargo, sólo algunos de los artículos se pueden adquirir comercialmente; la mayoría se preparará según las necesidades y especificaciones del cliente. En algunos casos, son necesarias consideraciones especiales acerca del diseño y construcción para tener en cuenta las propiedades corrosivas de ciertos productos químicos manejados (HF, F₂, ClF₃ y fluoruros de uranio), así como las preocupaciones sobre criticidad nuclear. Por último, cabe señalar que en todos los procesos de conversión del uranio, los elementos de equipo que no han sido diseñados o preparados de manera independiente para esta conversión pueden montarse en sistemas especialmente diseñados o preparados con esa finalidad.

7.1.1. Sistemas especialmente diseñados o preparados para la conversión de los concentrados de mineral uranífero en UO₃

NOTA EXPLICATIVA

La conversión de los concentrados de mineral uranífero en UO₃ puede realizarse disolviendo primero el mineral en ácido nítrico y extrayendo el nitrato de uranilo purificado con ayuda de un solvente como el fosfato de tributilo. A continuación, el nitrato de uranilo es convertido en UO₃ ya sea por concentración y desnitrificación o por neutralización con gas amoniaco para producir un diuranato de amonio que después es sometido a filtración, secado y calcinación.

7.1.2. Sistemas especialmente diseñados o preparados para la conversión del UO₃ en UF₆

NOTA EXPLICATIVA

La conversión del UO₃ en UF₆ puede realizarse directamente por fluoración. Este proceso necesita una fuente de fluoro gaseoso o de trifluoruro de cloro.

7.1.3. Sistemas especialmente diseñados o preparados para la conversión del UO3 en UO2

NOTA EXPLICATIVA

La conversión del UO₃ en UO₂ puede realizarse por reducción del UO₃ con hidrógeno o gas amoniaco craqueado.

7.1.4. Sistemas especialmente diseñados o preparados para la conversión del UO2 en UF4

NOTA EXPLICATIVA

La conversión del UO₂ en UF₄ puede realizarse haciendo reaccionar el UO₂ con ácido fluorhídrico gaseoso (HF) a 300 - 500° C.

7.1.5. Sistemas especialmente diseñados o preparados para la conversión del UF₄ en UF₆

NOTA EXPLICATIVA

La conversión del UF_4 en UF_6 se realiza por reacción exotérmica con flúor en un reactor de torre. El UF_6 es condensado a partir de los efluentes gaseosos calientes haciendo pasar los efluentes por una trampa fría enfriada a -10 $^{\circ}$ C. El proceso necesita una fuente de flúor gaseoso.

7.1.6. Sistemas especialmente diseñados o preparados para la conversión del UF₄ en U metálico

NOTA EXPLICATIVA

La conversión del UF₄ en U metálico se realiza por reducción con magnesio (grandes lotes) o calcio (pequeños lotes). La reacción se efectúa a una temperatura superior al punto de fusión del uranio (1 130° C).

7.1.7. Sistemas especialmente diseñados o preparados para la conversión del UF₆ en UO₂

NOTA EXPLICATIVA

La conversión del UF₆ en UO₂ puede realizarse por tres procesos diferentes. En el primero, el UF₆ es reducido e hidrolizado en UO₂ con ayuda de hidrógeno y vapor. En el segundo, el UF₆ es hidrolizado por disolución en agua; la adición de amoniaco precipita el diuranato de amonio que es reducido a UO₂ por el hidrógeno a una temperatura de 820° C. En el tercer proceso, el NH₃, el CO₂ y el UF₆ gaseosos se combinan en el agua, lo que ocasiona la precipitación del carbonato de uranilo y de amonio. Este carbonato se combina con el vapor y el hidrógeno a 500 - 600° C para producir el UO₂.

La conversión del UF₆ en UO₂ constituye a menudo la primera etapa que se realiza en una planta de fabricación de combustible.

7.1.8. Sistemas especialmente diseñados o preparados para la conversión del UF₆ en UF₄

NOTA EXPLICATIVA

La conversión del UF₆ en UF₄ se realiza por reducción con hidrógeno.

7.1.9. Sistemas especialmente diseñados o preparados para la conversión de UO2 en UCl4

NOTA EXPLICATIVA

La conversión de UO₂ en UCl₄ se realiza mediante dos procesos diferentes. En el primero, el UO₂ se hace reaccionar con tetracloruro de carbono (CCl₄) a 400° C aproximadamente. En el segundo proceso, el UO₂ se hace reaccionar a 700° C aproximadamente en presencia de negro de humo (CAS 1333-86-4), monóxido de carbono y cloro para producir UCl₄.

7.2. Plantas de conversión de plutonio y equipo especialmente diseñado o preparado para ese fin

NOTA INTRODUCTORIA

Los sistemas y plantas de conversión del plutonio permiten realizar una o más transformaciones de una especie química del plutonio a otra, con inclusión de: conversión de nitrato de plutonio en PuO₂, conversión del PuO₂ en PuF₄, y conversión del PuF₄ en plutonio metálico. Las plantas de conversión de plutonio por lo general guardan relación con plantas de reprocesamiento, pero también pueden estar vinculadas a instalaciones de fabricación de combustible de plutonio. Muchos de los elementos de equipo fundamentales de las plantas de conversión del plutonio son comunes a varios sectores de la industria química. Por ejemplo, entre los tipos de equipo que se utilizan en estos procesos cabe citar: hornos, hornos rotatorios, reactores de lecho fluidizado, reactores de torres de llama, centrifugadoras en fase líquida, columnas de destilación y columnas de extracción líquido - líquido. Pueden requerirse también celdas calientes, cajas de guantes y telemanipuladores. Sin embargo, sólo algunos de los artículos se pueden adquirir comercialmente; la mayoría se preparará según las necesidades y especificaciones del cliente. Es indispensable ejercer gran cuidado en el diseño y tener en cuenta los riesgos de criticidad, toxicidad y radiológicos del plutonio. En algunos casos hay que considerar aspectos especiales acerca del diseño y la construcción para tener en cuenta las propiedades corrosivas de algunos de los productos químicos utilizados (p. ej., HF). Por último, cabe señalar que, en todos los procesos de conversión del plutonio, los elementos de equipo que de manera independiente no han sido especialmente diseñados o preparados para la conversión del plutonio, pueden montarse en sistemas especialmente diseñados o preparados para esa finalidad.

7.2.1. Sistemas especialmente diseñados o preparados de conversión del nitrato de plutonio en óxido

NOTA EXPLICATIVA

Las operaciones principales de este proceso son las siguientes: ajuste, con posibilidad de almacenamiento, de la disolución de alimentación del proceso, precipitación y separación sólido/licor, calcinación, manipulación del producto, ventilación, gestión de desechos, y control del proceso Los sistemas del proceso están especialmente adaptados a los fines de evitar los efectos de la criticidad y de las radiaciones, y de minimizar los riesgos de toxicidad. En la mayoría de las instalaciones de reprocesamiento, este proceso implica la conversión de nitrato de plutonio en dióxido de plutonio. Otros procesos pueden entrañar la precipitación de oxalato de plutonio o peróxido de plutonio.

7.2.2. Sistemas especialmente diseñados o preparados para la producción de plutonio metálico

NOTA EXPLICATIVA

Este proceso por lo general entraña la fluoración del dióxido de plutonio, que suele efectuarse con fluoruro de hidrógeno sumamente corrosivo, para obtener fluoruro de plutonio, que luego se reduce empleando calcio metal de gran pureza a fin de obtener plutonio metálico y escoria de fluoruro de calcio. Las principales operaciones de este proceso son las siguientes: fluoración (p. ej. mediante equipo construido o revestido interiormente con un metal precioso), reducción con metales (p. ej. empleando crisoles de material cerámico), recuperación de escoria, manipulación del producto, ventilación, gestión de desechos, y control del proceso. Los sistemas del proceso están especialmente adaptados a los fines de evitar los efectos de la criticidad y de las radiaciones, y de minimizar los riesgos de toxicidad. Otros procesos incluyen la fluoración de oxalato de plutonio o peróxido de plutonio por reducción a metal.

ANEXO C

CRITERIOS RELATIVOS A LOS GRADOS DE PROTECCIÓN FÍSICA

- 1. La finalidad de la protección física de los materiales nucleares es evitar su empleo y manipulación no autorizados. El apartado a) del párrafo 3 del documento de las Directrices exige que haya acuerdo entre suministradores sobre los grados de protección física que han de observarse en relación con el tipo de materiales y de las instalaciones y equipo que contengan dichos materiales, teniendo en cuenta las recomendaciones internacionales.
- 2. El apartado b) del párrafo 3 del documento de las Directrices declara que la responsabilidad de la aplicación de las medidas de protección física en el país receptor recae en el Gobierno de dicho país. Sin embargo, los grados de protección física en que habrán de basarse estas medidas se ajustarán a un acuerdo entre suministrador y receptor. Estos requisitos se aplican a todos los Estados.
- 3. El documento INFCIRC/225 del Organismo Internacional de Energía Atómica titulado "Protección física de los materiales nucleares" y documentos análogos, preparados por grupos internacionales de expertos y actualizados en la medida necesaria para tener en cuenta los cambios que se han producido en el estado de la tecnología y de los conocimientos con respecto a la protección física de los materiales nucleares, constituyen una base útil de orientación para los Estados receptores que vayan a establecer un sistema de medidas y procedimientos de protección física.
- 4. La clasificación en categorías de los materiales nucleares que figuran en el cuadro adjunto, o la que pueda ser resultado de la actualización efectuada de vez en cuando mediante acuerdo mutuo entre los suministradores, servirá como base aceptada para señalar grados específicos de protección física en relación con el tipo de materiales y el equipo e instalaciones que contengan dichos materiales, de conformidad con los apartados a) y b) del párrafo 3 del documento de las Directrices.
- 5. Entre los grados de protección física que las autoridades nacionales competentes han aceptado asegurar en relación con el empleo, almacenamiento y transporte de los materiales que se relacionan en el cuadro adjunto, se incluirán, por lo menos, las características de protección siguientes:

CATEGORÍA III

Utilización y almacenamiento dentro de una zona cuyo acceso está controlado.

Transporte bajo precauciones especiales, entre ellas arreglos previos entre expedidor, receptor y transportista, y acuerdo previo entre entidades sometidas a la jurisdicción y reglamentación de los Estados suministrador y receptor respectivamente, en los casos de transporte internacional en que se especifique fecha, lugar y procedimientos para la transferencia de la responsabilidad del transporte.

CATEGORÍA II

Utilización y almacenamiento dentro de una zona protegida cuyo acceso está controlado, es decir, una zona vigilada constantemente por guardianes o dispositivos electrónicos, rodeada de

una barrera física con un número limitado de puntos de entrada bajo control apropiado, o cualquier zona con un grado equivalente de protección física.

Transporte bajo precauciones especiales, entre ellas arreglos previos entre expedidor, receptor y transportista, y acuerdo previo entre entidades sometidas a la jurisdicción y reglamentación de los Estados suministrador y receptor respectivamente, en los casos de transporte internacional en que se especifique fecha, lugar y procedimientos para la transferencia de la responsabilidad del transporte.

CATEGORÍA I

Los materiales comprendidos dentro de esta categoría se protegerán contra el uso no autorizado mediante sistemas de alta fiabilidad conforme a continuación se indica:

Utilización y almacenamiento dentro de una zona sumamente protegida, es decir, una zona protegida en la forma definida para la Categoría II, cuyo acceso queda limitado, además, a las personas cuya probidad haya sido determinada y que está vigilada por personal de guarda que se mantiene en estrecho contacto con fuerzas adecuadas de intervención. Las medidas específicas adoptadas a este respecto deberán perseguir el objetivo de detectar y evitar todo asalto, acceso no autorizado o retirada no autorizada de materiales.

Transporte bajo precauciones especiales conforme se especifican anteriormente para el transporte de materiales de las Categorías II y III y, además, bajo vigilancia constante por personal de escolta y en condiciones que aseguren una estrecha comunicación con equipos adecuados de intervención.

6. Los suministradores exigirán que los receptores identifiquen los organismos o autoridades en quienes recaiga la responsabilidad de asegurar el cumplimiento adecuado de los grados de protección y las operaciones de coordinación interna respuesta/recuperación en caso de utilización o manipulación no autorizados de materiales protegidos. Los suministradores y los receptores designarán también puntos de contacto dentro de sus organismos oficiales competentes en relación con la cooperación sobre cuestiones de transporte fuera del país y demás asuntos de interés mutuo.

CUADRO: CLASIFICACIÓN DE LOS MATERIALES NUCLEARES EN CATEGORÍAS

		Categoría		
Material	Forma	I	II	III
1. Plutonio*[a]	No irradiado*[b]	2 kg o más	Menos de 2 kg pero más de 500 g	500 g o menos*[c]
2. Uranio 235	No irradiado* [b] - uranio con un enriquecimiento en ²³⁵ U del 20% o superior	5 kg o más	Menos de 5 kg pero más de 1 kg	1 kg o menos*[c]
	- uranio con un enriquecimiento en ²³⁵ U del 10% o más pero inferior al 20%	-	10 kg o más	Menos de 10 kg*[c]
	 uranio con una proporción de ²³⁵U*superior al del uranio natural pero inferior al 10% [d] 	-	-	10 kg o más
3. Uranio 233	No irradiado*[b]	2 kg o más	Menos de 2 kg pero más de 500 g	500 g o menos*[c]
4. Combustible irradiado			Uranio natural o empobrecido, torio o combustible poco enriquecido (menos del 10% en contenido fisible)*[e][f]	

[[]a] En la forma indicada en la lista inicial.

[[]b] Material no irradiado en un reactor o material irradiado en un reactor pero con una intensidad de radiación igual o inferior a 100 rads/hora a 1 metro de distancia sin mediar blindaje.

[[]c] Deberían declararse exentas las cantidades inferiores a un valor radiológicamente significativo.

[[]d] El uranio natural, el uranio empobrecido y el torio, así como aquellas cantidades de uranio con un enriquecimiento inferior al 10% que no hayan de quedar incluidas en la Categoría III, deberían protegerse de conformidad con las prácticas de gestión prudente.

[[]e] Aunque se recomienda este nivel de protección, queda al arbitrio de los Estados asignar una categoría diferente de protección física, previa evaluación de las circunstancias que concurran en cada caso.

[[]f] Puede pasarse a la categoría inmediatamente inferior cualquier otro combustible que en razón de su contenido original en material fisible hubiera quedado incluido en las Categorías I o II antes de la irradiación, cuando la intensidad de radiación de ese combustible exceda de 100 rads/hora a 1 metro de distancia sin mediar blindaje.

Cuadro comparativo de los cambios efectuados en las Directrices para las transferencias nucleares (INFCIRC/254/Part 1)

Texto antiguo (Revisión 10)	Texto nuevo (Revisión 11)
ACTIVIDADES AUXILIARES	ACTIVIDADES AUXILIARES
	Apoyo para acceder a materiales nucleares con fines pacíficos
	12. Los suministradores, de conformidad con los objetivos de las
	presentes directrices, facilitarán el acceso a materiales nucleares para la utilización de la energía nuclear con fines pacíficos, y alentarán, en el
	marco del artículo IV del TNP, a los receptores a recurrir en la mayor
	medida posible al mercado comercial internacional y a otros
	mecanismos internacionales disponibles para obtener servicios relacionados con el combustible nuclear sin perjudicar el mercado
	mundial del combustible.
Seguridad física	Seguridad física
Seguridad fisica	Seguridad fisica
12. Los suministradores fomentarán la cooperación internacional en materia de seguridad física mediante el intercambio de información al respecto, la protección de los materiales nucleares en tránsito y la recuperación de los materiales y equipo nucleares robados. Los suministradores promoverán la más amplia adhesión a los instrumentos internacionales respectivos, entre otros a la Convención sobre la protección física de los materiales nucleares, así como la aplicación del documento INFCIRC/225, en su forma enmendada cada cierto tiempo. Los suministradores reconocen la importancia de esas actividades y otras actividades conexas del OIEA para evitar la proliferación de las armas nucleares y hacer frente a la amenaza del terrorismo nuclear.	13. Los suministradores fomentarán la cooperación internacional en materia de seguridad física mediante el intercambio de información al respecto, la protección de los materiales nucleares en tránsito y la recuperación de los materiales y equipo nucleares robados. Los suministradores promoverán la más amplia adhesión a los instrumentos internacionales respectivos, entre otros a la Convención sobre la protección física de los materiales nucleares, así como la aplicación del documento INFCIRC/225, en su forma enmendada cada cierto tiempo. Los suministradores reconocen la importancia de esas actividades y otras actividades conexas del OIEA para evitar la proliferación de las armas nucleares y hacer frente a la amenaza del terrorismo nuclear.

Apovo a la aplicación efectiva de las salvaguardias del OIEA

13. Los suministradores deberán poner especial empeño en apoyar la aplicación efectiva de las salvaguardias del OIEA. Los suministradores deberán apoyar igualmente la labor del Organismo para ayudar a los Estados Miembros a perfeccionar sus sistemas nacionales de contabilidad y control de los materiales nucleares y a acrecentar la eficacia técnica de las salvaguardias.

Análogamente deberán hacer todo lo posible para apoyar al OIEA en su tarea de aumento constante de la idoneidad de las salvaguardias teniendo presentes los progresos técnicos y el rápido crecimiento del número de instalaciones nucleares, así como para apoyar las iniciativas adecuadas conducentes a perfeccionar la eficacia de las salvaguardias del OIEA.

Características de diseño de las plantas incluidas en la lista inicial

14. Los suministradores deberán estimular a los diseñadores y fabricantes de instalaciones incluidas en la lista inicial para que las construyan de manera tal que facilite la aplicación de salvaguardias y acreciente la protección física, teniendo en cuenta también el riesgo de ataques terroristas. Los suministradores deberán promover la protección de la información sobre el diseño de las instalaciones incluidas en la lista inicial y recalcar a los receptores la necesidad de hacerlo. Los suministradores también reconocen la importancia de introducir características de seguridad tecnológica y no proliferación en el diseño y construcción de las instalaciones incluidas en la lista inicial.

Controles de las exportaciones

15. Cuando proceda, los suministradores deberán recalcar a los receptores la necesidad de someter los artículos y tecnología relacionada de la lista inicial transferidos y los artículos de esta lista obtenidos en

Apoyo a la aplicación efectiva de las salvaguardias del OIEA

14. Los suministradores deberán poner especial empeño en apoyar la aplicación efectiva de las salvaguardias del OIEA. Los suministradores deberán apoyar igualmente la labor del Organismo para ayudar a los Estados Miembros a perfeccionar sus sistemas nacionales de contabilidad y control de los materiales nucleares y a acrecentar la eficacia técnica de las salvaguardias.

Análogamente deberán hacer todo lo posible para apoyar al OIEA en su tarea de aumento constante de la idoneidad de las salvaguardias teniendo presentes los progresos técnicos y el rápido crecimiento del número de instalaciones nucleares, así como para apoyar las iniciativas adecuadas conducentes a perfeccionar la eficacia de las salvaguardias del OIEA.

Características de diseño de las plantas incluidas en la lista inicial

15. Los suministradores deberán estimular a los diseñadores y fabricantes de instalaciones incluidas en la lista inicial para que las construyan de manera tal que facilite la aplicación de salvaguardias y acreciente la protección física, teniendo en cuenta también el riesgo de ataques terroristas. Los suministradores deberán promover la protección de la información sobre el diseño de las instalaciones incluidas en la lista inicial y recalcar a los receptores la necesidad de hacerlo. Los suministradores también reconocen la importancia de introducir características de seguridad tecnológica y no proliferación en el diseño y construcción de las instalaciones incluidas en la lista inicial.

Controles de las exportaciones

16. Cuando proceda, los suministradores deberán recalcar a los receptores la necesidad de someter los artículos y tecnología relacionada de la lista inicial transferidos y los artículos de esta lista obtenidos en instalaciones inicialmente transferidas por el suministrador o con ayuda de equipo o tecnología inicialmente transferida por el suministrador a los controles de las exportaciones especificados en la resolución 1540 del Consejo de Seguridad de las Naciones Unidas. Se alienta a los suministradores a ofrecer, cuando proceda y sea posible, asistencia a los receptores en el cumplimiento de sus respectivas obligaciones en virtud de esa resolución.

instalaciones inicialmente transferidas por el suministrador o con ayuda de equipo o tecnología inicialmente transferida por el suministrador a los controles de las exportaciones especificados en la resolución 1540 del Consejo de Seguridad de las Naciones Unidas. Se alienta a los suministradores a ofrecer, cuando proceda y sea posible, asistencia a los receptores en el cumplimiento de sus respectivas obligaciones en virtud de esa resolución.

Consultas

- 16. a) Los suministradores se mantendrán en contacto y se consultarán por conducto ordinario sobre los asuntos relacionados con la aplicación de estas Directrices.
 - b) Los suministradores consultarán a otros gobiernos interesados, en la forma en que cada uno considere apropiada, sobre casos concretos de carácter delicado a fin de velar por que ninguna transferencia favorezca los riesgos de conflicto o inestabilidad.
 - c) Sin perjuicio de lo dispuesto en los apartados d) a f) del presente párrafo:
 - En caso de que uno o más suministradores opinen que se han vulnerado los acuerdos suministrador receptor derivados de estas Directrices, especialmente en caso de explosión de un dispositivo nuclear, o de que un receptor ponga término ilegalmente a las salvaguardias del OIEA o las infrinja, los suministradores se consultarán inmediatamente por conducto diplomático a fin de determinar y evaluar la realidad y alcance de la infracción denunciada. Se alienta igualmente a los suministradores a consultarse cuando se revele la existencia de materiales nucleares o actividades del ciclo del combustible nuclear no declarados al OIEA o de una actividad relacionada con dispositivos explosivos nucleares.

Consultas

- <u>17.</u> a) Los suministradores se mantendrán en contacto y se consultarán por conducto ordinario sobre los asuntos relacionados con la aplicación de estas Directrices.
 - b) Los suministradores consultarán a otros gobiernos interesados, en la forma en que cada uno considere apropiada, sobre casos concretos de carácter delicado a fin de velar por que ninguna transferencia favorezca los riesgos de conflicto o inestabilidad.
 - c) Sin perjuicio de lo dispuesto en los apartados d) a f) del presente párrafo:
 - En caso de que uno o más suministradores opinen que se han vulnerado los acuerdos suministrador receptor derivados de estas Directrices, especialmente en caso de explosión de un dispositivo nuclear, o de que un receptor ponga término ilegalmente a las salvaguardias del OIEA o las infrinja, los suministradores se consultarán inmediatamente por conducto diplomático a fin de determinar y evaluar la realidad y alcance de la infracción denunciada. Se alienta igualmente a los suministradores a consultarse cuando se revele la existencia de materiales nucleares o actividades del ciclo del combustible nuclear no declarados al OIEA o de una actividad relacionada con dispositivos explosivos nucleares.

- En espera del rápido resultado de dichas consultas, los suministradores no actuarán de modo que pueda prejuzgar cualquier medida que tal vez adopten otros suministradores con respecto a sus contactos en curso con el receptor en cuestión. Cada suministrador considerará igualmente la posibilidad de suspender las transferencias de artículos de la lista inicial mientras se encuentren en curso las consultas prevista en el apartado c) del presente párrafo, en espera de un acuerdo entre los suministradores sobre la respuesta apropiada.
- Sobre la base de los resultados de dichas consultas, los suministradores, teniendo en cuenta el artículo XII del Estatuto del OIEA, deberán convenir la respuesta apropiada y las posibles medidas, entre las que pudiera incluirse la suspensión de las transferencias nucleares al receptor en cuestión.
- d) Cuando el OIEA notifique que un receptor ha infringido su obligación de cumplir las disposiciones de su acuerdo de salvaguardias, los suministradores considerarán la suspensión de la transferencia de artículos de la lista inicial a ese Estado mientras éste sea investigado por el OIEA. A los efectos del presente párrafo, por "infracción" se entiende únicamente las infracciones graves de interés desde el punto de vista de la proliferación.
- e) Los suministradores respaldan la suspensión de las transferencias de artículos de la lista inicial a los Estados que incumplen sus obligaciones de no proliferación nuclear y salvaguardias, y reconocen que la responsabilidad y autoridad respecto de esas decisiones incumben a los gobiernos nacionales o al Consejo de Seguridad de las Naciones Unidas. En particular, esto se aplica en situaciones en que la Junta de Gobernadores del OIEA adopta cualesquiera de las medidas siguientes:
 - confirma, con arreglo al párrafo C del artículo XII del Estatuto, que ha habido incumplimiento por parte del receptor, o pide a un

- En espera del rápido resultado de dichas consultas, los suministradores no actuarán de modo que pueda prejuzgar cualquier medida que tal vez adopten otros suministradores con respecto a sus contactos en curso con el receptor en cuestión. Cada suministrador considerará igualmente la posibilidad de suspender las transferencias de artículos de la lista inicial mientras se encuentren en curso las consultas prevista en el apartado c) del presente párrafo, en espera de un acuerdo entre los suministradores sobre la respuesta apropiada.
- Sobre la base de los resultados de dichas consultas, los suministradores, teniendo en cuenta el artículo XII del Estatuto del OIEA, deberán convenir la respuesta apropiada y las posibles medidas, entre las que pudiera incluirse la suspensión de las transferencias nucleares al receptor en cuestión.
- d) Cuando el OIEA notifique que un receptor ha infringido su obligación de cumplir las disposiciones de su acuerdo de salvaguardias, los suministradores considerarán la suspensión de la transferencia de artículos de la lista inicial a ese Estado mientras éste sea investigado por el OIEA. A los efectos del presente párrafo, por "infracción" se entiende únicamente las infracciones graves de interés desde el punto de vista de la proliferación.
- e) Los suministradores respaldan la suspensión de las transferencias de artículos de la lista inicial a los Estados que incumplen sus obligaciones de no proliferación nuclear y salvaguardias, y reconocen que la responsabilidad y autoridad respecto de esas decisiones incumben a los gobiernos nacionales o al Consejo de Seguridad de las Naciones Unidas. En particular, esto se aplica en situaciones en que la Junta de Gobernadores del OIEA adopta cualesquiera de las medidas siguientes:
 - confirma, con arreglo al párrafo C del artículo XII del Estatuto, que ha habido incumplimiento por parte del receptor, o pide a un

Estado receptor que adopte medidas concretas encaminadas al cumplimiento de sus obligaciones de salvaguardias:

 decide que el Organismo no está en condiciones de verificar que no se ha producido ninguna desviación de los materiales nucleares que deben estar sometidos a salvaguardias, incluidas situaciones en que las medidas adoptadas por un Estado receptor no hayan permitido al OIEA cumplir su misión de salvaguardias en ese Estado.

Se celebrará una sesión plenaria extraordinaria en el plazo de un mes a partir de que la Junta de Gobernadores haya adoptado la medida en la que los suministradores examinarán la situación, compararán las políticas nacionales y acordarán la respuesta apropiada.

- f) Las disposiciones previstas en el apartado e) del presente párrafo no se aplican a las transferencias a que se refiere el apartado b) del párrafo 4 de las Directrices.
- 17. Se requiere la aprobación unánime de cualquier modificación de estas Directrices, incluso de cualquier modificación que pueda derivarse de la reconsideración mencionada en el párrafo 5.

Estado receptor que adopte medidas concretas encaminadas al cumplimiento de sus obligaciones de salvaguardias;

 decide que el Organismo no está en condiciones de verificar que no se ha producido ninguna desviación de los materiales nucleares que deben estar sometidos a salvaguardias, incluidas situaciones en que las medidas adoptadas por un Estado receptor no hayan permitido al OIEA cumplir su misión de salvaguardias en ese Estado.

Se celebrará una sesión plenaria extraordinaria en el plazo de un mes a partir de que la Junta de Gobernadores haya adoptado la medida en la que los suministradores examinarán la situación, compararán las políticas nacionales y acordarán la respuesta apropiada.

- f) Las disposiciones previstas en el apartado e) del presente párrafo no se aplican a las transferencias a que se refiere el apartado b) del párrafo 4 de las Directrices.
- **18.** Se requiere la aprobación unánime de cualquier modificación de estas Directrices, incluso de cualquier modificación que pueda derivarse de la reconsideración mencionada en el párrafo 5.