Plant improvement by induced mutations

by A. Micke*

Better varieties of crop plants are a very fundamental contribution to improved agricultural and horticultural production. Better varieties mean genotypes or populations of genotypes that are well adapted to agroclimatic conditions and interact with the environment and farmers' inputs in a favourable way. They should have the capacity for high production of grain, bulbs, shoots, fruits, roots, or whatever is harvested. These products should be of good quality from nutritional and technological point of view depending upon the use of the product (milling, baking, cooking, extraction, etc.). The crop production should be stable, i.e. the varieties have to be tolerant to various stresses like draught, cold, heat, salinity, and resistant to pathogens and pests. They should be efficient in using the energy supplied from the sun, and the water and fertilizer supplied by the farmer. If crop plants belong to those species that are able to fix nitrogen, they should do so with high efficiency. If they are cultivated together with other plants, they should compete well and be adapted to intercropping. The period and duration of cultivation required should be adjusted to the climatic conditions and the crop rotation pattern, ensuring optimal production from farmer's land (or greenhouse space) throughout the year.

Man has since prehistoric times adapted plant species to his needs. However, man's population has increased dramatically, technological requirements are changing, and stress, diseases, and pests are ever present to threaten the outcome of farmers' work. So plant breeders have to improve cultivars and to do so at an accelerated pace to meet demands.

Genetic variability is required for the plant breeder to select the better traits. Mutation induction by radiation and other mutagens is a means of altering genes and creating genetic variability for the breeder.

Mutation induction techniques have been known for about 50 years, but only during the last 15 years have they become established as a valuable tool for crop plant improvement. Now an increasing number of varieties is released by breeders for cultivation by farmers and horticulturists

 $[\]ast$ Mr Micke is Head, Plant Breeding Section, in the Joint FAO/ IAEA Division

Species	Name	Dire	ct Cross
Allium cepa	onion	2	-
Arachıs hypogaea	groundnut	4	2
Avena sativa	oat	4	3
Brassica sp	rape seed	4	
Capsicum annuum	green pepper	3	_
Citrus sp	grape fruit	1	_
Corchorus capsularıs	jute	4	
Glycine max	soybean	6	_
Gossypium sp	cotton	3	_
Helianthus annuus	sunflower	1	-
Hordeum satıvum	barley	25	32
Lactuca sativa	lettuce	2	
Linum usitatissimum	linseed	1	_
Lupinus sp.	lupine	1	3
Lycopersicon esculentum	tomato	3	
Maius pumila	apple	4	
Mentha sp	mint	3	-
Nicotiana tabacum	tobacco	_	4
Ornithopus compressus	serradella	1	
Oryza satıva	rice	28	9
Pennisetum sp	millet	-	1
Phaseolus vulgarıs	bean	5	5
Pisum sativum	pea	4	1
Prunus armeniaca	apricot	1	-
Prunus avium	cherry	2	1
Prunus persicae	peach	1	
Ribes	currant	1	-
Ricinus communis	castor bean	2	1
Saccharum officinarum	sugar cane	8	-
Secale cereale	rye	1	—
Sericea lespedeza	lespedeza	1	1
Sesamum orientale	sesame	1	—
Sinapis alba	mustard	1	2
Solanum tuberosum	potato	1	—
Solanum khasianum		1	
Trifolium incarnatum	crimson clover	1	-
Trifolium subterraneum	subterranean clover	1	
Triticum aestivum	bread wheat	12	5
Triticum turgidum	durum wheat	5	7
Zea mais	maize	-	3

Table 1. Mutant varieties

Data for this and the other tables are taken from the issues of Mutation Breeding Newsletter published up to 17 March 1981

 Table 2 Number of mutant varieties of agricultural crop plants

 released in different countries

India	35	Finland	6	Hungary	2
USA	26	Austria	5	Norway	1
Japan	21	France	5	Denmark	1
USSR	18	Bulgaria	4	Indonesia	1
Sweden	15	Australia	3	Pakistan	1
CSSR	15	Philippines	3	Ivory Coast	1
Italy	9	German Democrati	c 3	Algeria	1
China	9	Republic		Egypt	1
Canada	7	Korea, Rep of	3	Greece	1
Germany,	7	Argentina	3		
Fed. Rep	of	Netherlands	2		
United	6	Burma	2	-	
Kingdom		Thailand	2		
Bangladesh	6				

		before 1955	1955—59	1960–64	1966-69	1970—74	197579
Varieties developed through direct	Seed propagated crops	3	6	14	24	34	30
multiplication of selected mutant	Vegetatively propagated crops (without ornamentals)				4	13	4
Varieties developed through cross with mutant(s)		1	2	5	9	19	41

Tables 1 and 2 show that by using induced mutations, 227 improved varieties of agricultural crops have been developed and released to farmers in 35 different countries. Eighty of these cultivars were released by breeders in developing countries and contribute to the economic development of these countries. Table 3 shows the years of release, and it is clear that success of mutation breeding has mainly been reached during the last ten years. Of particular importance is the fact that breeders now recognize the value of induced mutants as parents in cross-breeding, and have had excellent results from such crosses (Table 3).

Ornamental plants are not generally looked upon as valuable for developing countries. However, they are an important source of income for the small farmer and horticulturist, and in addition may have enormous economic value for a country if the products are exported and earn convertible currency. Tables 4 and 5 give an idea of the use of induced mutations in breeding ornamental plants.

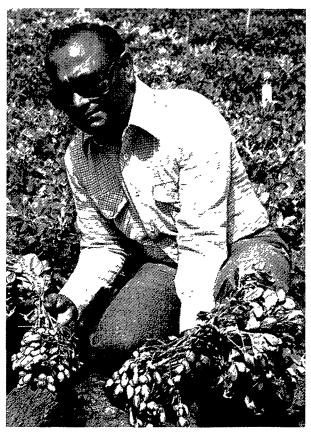

Table 4. Ornamental mutant varieties		
Abelia	1	
Achimenes	8	
Alstroemeria	15	
Antirrhinum	4	
Azalea	10	
Begonia	21	
Bougainvillea	2	
Chrysanthemum	98	
Dianthus	2	
Dahlia	34	
Euphorbia	1	
Guzmania	1	
Hibiscus	4	
Lilium	2	
Malus	1	
Polyanthes	2	
Populus	1	
Portulaca	7	
Rhododendron	1	
Rose	7	
Streptocarpus	18	
Tulipa	2	

Table 5. Countries where ornamental mutant varieties were developed

Netherlands	100
India	53
USSR	18
USA	16
Japan	12
German Democratic Republic	12
German y , Fed Rep of	11
Belgium	8
France	6
Canada	3
Hungary	1
CSSR	1
UK	1

The Agency has been involved in fostering mutation breeding since its foundation as part of its mandate to support the peaceful applications of nuclear techniques. Through training and direct research support it has contributed to and certainly can be proud of its success. For the last nine years, the Joint FAO/IAEA Division has published the Mutation Breeding Newsletter which provides a unique opportunity to plant breeders all over the world to keep abreast with the development and achievements in this field.

Using radiation and mutation breeding techniques, Mr Shri S.H. Patil of the Bhabha Atomic Research Centre in Bombay, India, has developed more than twenty Trombay Groundnut varieties characterized by early maturity, higher oil content, larger kernels, and higher yields. In recognition of his work, Mr Patil was a joint winner of the 1978 Vasvik Award for agriculture.

NPT Newsletter

As of 31 July 1981, the International Atomic Energy Agency had negotiated safeguards agreements with 79 nonnuclear-weapon States party to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). Safeguards agreements were in force with 69 of these States. Safeguards agreements with a further 10 non-nuclear-weapon States which had been approved by the IAEA Board of Governors were awaiting entry into force. The date in parentheses after the name of the State indicates the time by which the NPT safeguards agreement should have entered or should enter into force.

NON-NUCLEAR-WEAPON STATES PARTY TO NPT

1	Afghanistan	57	Lesotho
2.	Australia	58	Liberia (5 March 72)
3	Austria	59	Libyan Arab Jamahiriya
4	Bahamas (10 January 75)	60	Liechtenstein
5	Bangladesh (27 March 81)	61.	Luxembourg
6	Barbados (21 August 81)	62.	Madagascar
7	Belgium	63	Malaysia
8	Benin (30 April 74)	64	Maldives
9.	Bolivia [*] (5 March 72)	65.	Mali (5 March 72)
10.	Botswana (5 March 72)	66.	Malta (5 March 72)
11	Bulgaria	67	Mauritius
12.	Burundi (19 September 72)	68.	Mexico
13	Canada	69.	Mongolia
14.	Central African Republic (25 April 72)	70	Могоссо
15	Chad (10 September 72)	71.	Nepal
16.	Congo (23 April 80)	72.	Netherlands
17.	Costa Rica	73	New Zealand
18.	Cyprus	74.	Nicaragua
19	Czechoslovakia	75	Nigeria (5 March 72)
20	Democratic Kampuchea (2 December 73)	76.	Norway
21	Democratic Yemen (1 December 80)	77	Panama (13 July 78)
22.	Denmark	78.	Paraguay
23.	Dominican Republic	79.	Peru
24	Ecuador	80	Philippines
25.	Egypt (26 August 82)	81.	Poland
26.	El Salvador	82.	Portugal
27.	Ethiopia	83.	Romania
28	Fiji	84	Rwanda (20 November 70
29	Finland	85.	St. Lucia (29 June 81)
30	Gabon* (7 August 75)	86	Samoa
31.	Gambia	87.	San Marino* (5 March 72)
32.	German Democratic Republic	88	Senegal
33.	Germany, Federal Republic of	89.	Sierra Leone* (26 August
34	Ghana	90.	Singapore
35.	Greece	91.	Somalia (5 March 72)
36.	Grenada (19 February 76)	92	Sri Lanka* (5 September
37.	Guatemala* (22 March 72)	93.	Sudan
38.	Guinea Bissau (20 February 78)	94.	Suriname
39.	Haiti * (2 June 72)	95	Swaziland
40	Holy See	96	Sweden
41.	Honduras	97.	Switzerland
42	Hungary	98.	Syrian Arab Republic (5 M
43.	Iceland	99.	Thailand
44	Indonesia	100.	Togo (5 March 72)
45	Iran	101.	Tonga* (7 January 73)
46.	Iraq	101.	Tunisia (5 March 72)
47.	Ireland	102	Turkey* (17 October 81)
48	Italy	105	Tuvalu (19 July 80)
49.	Ivory Coast (6 September 74)	104.	United Republic of Came
50.	Jamaica	105.	Upper Volta (5 March 72)
50.	Japan	100	Uruguay
52.	Jordan	107.	Venezuela* (26 March 77
53.	Kenya (5 March 72)	108.	Yugoslavia
55. 54.	Korea, Republic of	109.	Y ugoslavia Zaire
55	Lao People's Democratic Republic (5 March 72)	[111.	
55	Labanon	[111.	"Republic of China" - 5

56. Lebanon

ngolia rocco bal herlands w Zealand aragua eria (5 March 72) rway ama (13 July 78) aguay U lippines and tugal mania anda (20 November 76) Lucia (29 June 81) noa Marino* (5 March 72) egal ra Leone* (26 August 76) gapore nalıa (5 March 72) Lanka* (5 September 80) lan iname azıland eden itzerland uan Arab Republic (5 March 72) iland 30 (5 March 72) nga* (7 January 73) nisıa (5 March 72) rkey* (17 October 81) alu (19 July 80) ited Republic of Cameroon (5 March 72) per Volta (5 March 72) iguay nezuela* (26 March 77) goslavia

- ге
 - epublic of China" 5 March 72]
 - The "Republic of China" has ratified the NPT

Note:	Bold:	States having NPT safeguards agreement in force.
	Italics:	States not having NPT safeguards agreements in force.

*: Safeguards agreement approved by the IAEA Board of Governors and awaiting entry into force.