

Замкнуть цикл

Разработаны различные варианты захоронения низкоактивных отходов, и в некоторых государствах-членах появляются хорошие перспективы геологического захоронения радиоактивных отходов.

бращение с отработавшим топливом и радиоактивными отходами - это особенно сложная задача, с которой сталкиваются страны, как впервые, так и давно занимающиеся ядерной энергетикой, и данная проблема является главной причиной обеспокоенности населения. Это еще более актуально в связи с тем, что жизненный цикл ядерноэнергетической программы может достигать 100 лет или более, а необходимость надлежащего обращения с отработавшим топливом и радиоактивными отходами сохраняется в течение гораздо более долгого периода времени.

Важность безопасного обращения с радиоактивными отходами для защиты здоровья человека и охраны окружающей среды признана давно, и уже накоплен значительный опыт в определении целей безопасности, создании норм безопасности и разработке технологии и механизмов демонстрации безопасности. Тем не менее, хотя государствачлены достигли значительного прогресса в области безопасного обращении с имеющимися у них радиоактивными отходами, ряду стран еще предстоит разработать национальные стратегии и укрепить национальную инфраструктуру для осуществления национальных стратегий.

Глобальный режим безопасности

Безопасность обращения с радиоактивными отходами признается в качестве международной проблемы ввиду глобального характера атомной отрасли

Цилиндрические контейнеры, содержащие имитатор радиоактивных отходов, в центре для посетителей на заводе в Роккашо-Мура, Япония, показывают, как упаковываются и хранятся радиоактивные отходы.

(Фото: К. Хансен/ МАГАТЭ)

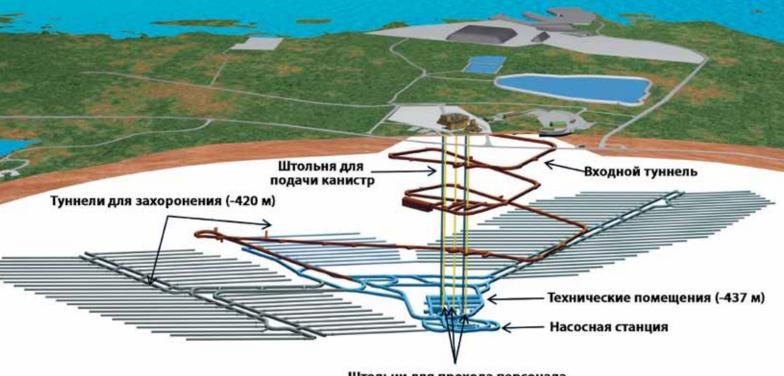
и в связи с тем, что длительные временные рамки, характеризующие обращение с ними, сниж-ают актуальность международных границ. Признание этого усиливается по мере роста использования ядерной энергии. В целях обеспечения безопасности обращения с радиоактивными отходами международное сообщество установило и соблюдает глобальный режим ядерной безопасности, состоящий из нескольких элементов. К ним относятся Объединенная конвенция о безопасности обращения с отработавшим топливом и о безопасности обращения с радиоактивными отходами и Международные нормы безопасности. Этот международный режим дополняется национальными юридическими и регулирующими основами.

Имеющееся в мире количество радиоактивных отходов

За период с начала использования ядерной энергии в 1940-х годах суммарное количество радиоактивных отходов, с которыми производилось обращение во всем мире до настоящего времени, включая совокупные объемы захороненных отходов, составляет примерно сорок один млн. кубических метров отходов низкой и средней активности, двести тысяч метрических тонн (тяжелого металла) отработавшего ядерного топлива, четыреста тысяч кубометров высокоактивных отходов и два миллиарда кубометров остатков, поступивших из цикла производства урана. Следует отметить, что подавляющее большинство высокоактивных отходов (приблизительно 89%) является результатом деятельности по разработке оружия в США и бывшем Советском Союзе в период холодной войны. Большая часть этих отходов находится в необработанной, жидкой форме. Среднегодовые глобальные темпы захоронения всех классов отходов в совокупности составляют приблизительно три миллиона кубических метров в год, прежде всего отходов низкой или очень низкой активности. Годовое накопление высокоактивных отходов довольно постоянно, причем средние темпы накопления составляют приблизительно восемьсот пятьдесят кубометров в год во всем мире (исходя из среднего объема высокоактивных отходов, произведенных на метрическую тонну переработанного отработавшего топлива). Отходы низкой, промежуточной и высокой активности – это различные классы отходов, требующие все более высоких уровней локализации и изоляции от людей и окружающей среды.

Варианты обращения с радиоактивными отходами

С отходами, образовавшимися до настоящего времени, обращались разнообразными способами. Часть их содержится в различных хранилищах в ожидании решений относительно окончательного захоронения, некоторые хранятся, ожидая разработки установки для окончательного захоронения, а часть помещена в хранилища для окончательного захоронения. Разработаны различные типы установок для захоронения, но в принципе все они включают ряд инженерно-технических и естественных барьеров, предназначенных для изоляции отходов от биосферы и удерживания радиоактивного содержимого, с тем чтобы исключить радиационные риски для людей и окружающей среды. Хранение и захоронение радиоактивных отходов низкой активности – это установившаяся практика во всем мире, причем насчитывается более ста установок для захоронения. Хранение отработавшего ядерного топлива и высокоактивных отходов также является установившейся практикой. Разработка установок для захоронения отработавшего ядерного топлива и высокоактивных отходов проводится в течение почти трех десятилетий и только начинает приносить плоды. Выбранным вариантом проекта является захоронение в глубоком геологическом горизонте (слое горной породы определенного состава), и хотя концептуальная разработка проекта находится на зрелой стадии, его все еще предстоит осуществить.



Геологическое захоронение радиоактивных отходов высокого уровня активности

Проекты по созданию установок для геологического захоронения радиоактивных отходов высокого уровня активности и отработавшего ядерного топлива разрабатываются в ряде стран. Большой объем работ, выполненных к настоящему времени, связан с исследованием пригодности геологических характеристик различных вмещающих пород, концептуальными проектами установок для захоронения и с получением согласия сообществ в местах размещения. В работе над этими технологическими и социально-политическими аспектами отмечается прогресс; кроме того, были извлечены многие уроки, в частности, стала ясна необходимость

Исследование способов безопасного хранения радиоактивных отходов. В подземной лаборатории в горном массиве Гримзель в Швейцарских Альпах круглогодично проводятся исследования способов безопасного захоронения высокорадиоактивных отходов. На фотографии показан туннель хранилища глубокого залегания для отработавшего ядерного топлива.

(Подземная лаборатория в горном массиве Гримзель, Швейцария).

Штольни для прохода персонала и вентиляционные штольни

Рисунок установки для окончательного захоронения ядерных отходов высокой активности. (Предоставлен: компанией "Посива Ой")

обоснованного научного исследования наряду с открытым и транспарентным диалогом между всеми заинтересованными сторонами.

Некоторым странам удалось добиться успехов в плане технической разработки и общественного принятия, и в настоящее время ведется работа по подготовке заявок на получение лицензии и их представлению национальным регулирующим органам. Заявка на лицензию для хранилища "Юкка-Маунтин" в США была представлена в 2008 году и рассматривается КЯР США, хотя в отношении будущего этого проекта существует политическая неопределенность*. В Швеции на 2010 год намечено подать заявку на получение лицензии для площадки для геологического захоронения в Форсмарке, причем строительство установки для захоронения, как ожидается, начнется в 2015 году, а эксплуатация – в 2023 году.

В Финляндии подача заявки на получение лицензии для геологического захоронения на площадке в Олкилуото запланирована на конец 2012 года, получение лицензии на эксплуатацию ожидается в 2018 году, а начало эксплуатации – в 2020 году. Во Франции подача заявки на получение лицензии на строительство хранилища для геологического захоронения в районе Моз запланирована на конец 2014 года, начало строительства – после 2016 года, а начало эксплуатации – в 2025 году. Финляндия и Швеция будут производить захоронение отработавшего топлива, тогда как Франция будет производить захоронение остеклованных отходов, образующихся при переработке отработавшего топлива. Во всех случаях были проведены

*В январе 2010 года министр энергетики США объявил о создании Авторитетной комиссии по ядерному будущему Америки для выработки рекомендаций по обращению с отработавшим топливом и ядерными отходами. В марте министерство энергетики отозвало свою находящуюся на рассмотрении заявку на получение лицензии для постоянного геологического хранилища в Юкка-Маунтин.

широкие научные исследования явлений и процессов, влияющих на безопасность установок для захоронения, и были разработаны инженерно-технические решения для конфигурации подземного захоронения. Была разработана аргументация по вопросам безопасности, и она объединялась и объединяется со всей вспомогательной научнотехнической и управленческой информацией и данными в структурированные обоснования безопасности, составляющие основу для обоснования выдачи лицензии. В Швеции, Финляндии и Франции начнется рассмотрение и утверждение обоснований безопасности регулирующими органами. Хотя накоплен значительный опыт лицензирования ядерных установок, до настоящего времени это были установки с ограниченным жизненным циклом, находящиеся под эксплуатационным контролем. Лицензирование геологического захоронения признается в качестве нового процесса для регулирующих органов, и связанные с этим уникальные проблемы обусловлены продолжительностью соответствующих временных рамок и той ролью, которую играет естественная геологическая среда.

Вмещающие геологические среды выбираются после тщательного рассмотрения их свойств и оценки процессов эволюции установки для захоронения и окружающей ее геологической среды на протяжении интервала времени, обеспечивающего существенное снижение радиоактивности хранящихся материалов. Такие временные рамки составляют от десятков до сотен тысяч лет; это продолжительные периоды с точки зрения людей, но в терминах геологической истории они менее долги. Регулирующие органы в странах, проявляющих интерес к геологическому захоронению, признают эти изменения и в течение прошедшего десятилетия участвовали в активном диалоге с целью разработки согласованных подходов, определяющих как цели, так и критерии безопасности, а также пути их достижения. Этот диалог направлен на осуществление международных норм безопасности.

Они также участвуют в международных проектах по согласованию с целью обмена идеями и опытом относительно соответствующего процесса лицензирования.

Нормы безопасности и международные проекты

Разработка международных норм безопасности для геологического захоронения и демонстрация безопасности продолжается в течение ряда лет, причем уже достигнута большая степень согласованности. Тем не менее, хотя детальный процесс составления обоснований безопасности и заявок на получение лицензий для установок геологического захоронения продвигается вперед и регулирующие органы готовятся и приступают к осуществлению их рассмотрения, все еще предстоит урегулировать многие конкретные вопросы. Государствами – членами МАГАТЭ разработаны и одобрены пересмотренные и обобщенные международные нормы, содержащие Требования безопасности при захоронения радиоактивных отходов, причем в нынешнем году будут выпущены обновления. Подготовка детальных руководящих материалов по обоснованию безопасности и его рассмотрению регулирующими органами также находится на продвинутой стадии, и это должно значительно помочь достижению согласованного на международном уровне подхода.

Как указано, страны, в настоящее время продвигающиеся в направлении лицензирования установок для геологического захоронения, и другие страны, имеющие менее продвинутые программы, признают выгоды согласованных на международном уровне подходов к процессу лицензирования и участвуют в различных соответствующих инициативах. В рамках Европейского региона в течение некоторого времени осуществляется инициатива, посвященная этому процессу согласования, а на международном уровне как МАГАТЭ, так и Агентство по ядерной энергии Организации

экономического сотрудничества и развития (АЯЭ/ ОЭСР) осуществляют соответствующие проекты, а именно, проект по безопасности геологического захоронения (ГЕОСАФ) и проект группы интеграции для обоснования безопасности (ГИОБ). Эти проекты по согласованию направлены на решение ключевых вопросов, касающихся структуры и содержания обоснования безопасности и его эволюции на протяжении жизненного цикла проекта, подхода к поддержке оценки безопасности и критериев безопасности для оценки долгосрочной безопасности после закрытия. Предполагается, что эта работа приведет к достижению консенсуса по многим аспектам процессов демонстрации безопасности и лицензирования.

Заключение

По мере расширения во всем мире производства энергии с использованием ядерной энергетики объемы образующихся радиоактивных отходов будут возрастать. Благодаря появлению все более совершенных конструкций реакторов и вариантов топливного цикла, несомненно, повысится и эффективность, что будет способствовать сокращению объемов образующихся радиоактивных отходов. Тем не менее, будет происходить накопление все больших объемов радиоактивных отходов, и необходимо будет обеспечивать безопасное обращение с ними. Уже разработаны варианты захоронения низкоактивных отходов, и на горизонте появляются хорошие перспективы геологического захоронения радиоактивных отходов. В следующем десятилетии эти перспективы должны быть подтверждены и ядерный топливный цикл безопасно замкнут.

Дидье Лува является руководителем Секции безопасности отходов и окружающей среды МАГАТЭ. Эл. почта: D.Louvat@iaea.org

Фил Меткалф возглавляет Группу обращения с радиоактивными отходами и отработавшим топливом МАГАТЭ. Эл. почта: P.E.Metcalf@iaea.org. В Гримзеле обнаружена хрустальная пещера возрастом 16 млн. лет.

(Подземная лаборатория в горном массиве Гримзель, Швейцария).

