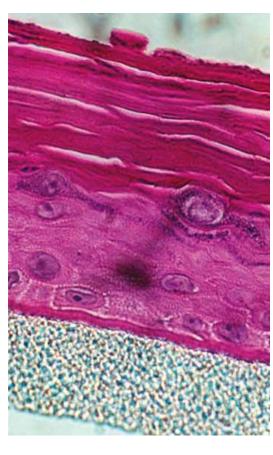
国际原子能机构致力于提高成员国 在组织工程方面的能力

"组织,其英文名称为TISSUE,通 常指形成动物或植物结构材料之一的同一 类别细胞及细胞间质的集合体"。

组织缺失是最严重的疾病后果之一, 如烧伤、癌症、心血管疾病和涉及身体部 件整体或部分缺失的创伤事故等。

利用天然或人造的砌块对缺失的组织 进行再生是目前最有前景的治疗。

原子能机构正在帮助其成员国开发和 利用组织工程技术,这是一个相对较新的 领域,重点关注从干细胞或合成的生物材料 (包括从天然材料中产生的聚合物)中产 出新的组织。


砌块

成千上万的人每年因疾病或受伤而遭 受组织缺失的痛苦。大多数国家已建立了 处理和贮存捐献组织(来自尸体或其他来 源)的组织库。但这些库都面临世界性的 捐献组织短缺,由于宗教、文化或社会原 因,大多数人不愿死后为医学而捐献他们 或亲属的器官。此外,也许尚缺乏有助于 组织捐献或采集的国家捐献者登记程序。

因此,各国目前都把人造/工程化组织 视为解决长久以来组织缺失的医学问题的 最佳方案。

制作组织支架是组织再生的首批步骤 之一。组织支架是具有粗糙表面的架构, 粗糙表面有助于细胞生长(细胞在光滑表 面不生长)和细胞迁移(如人一样,细胞 愿与其他细胞来往和相互作用)。

原子能机构应用辐射生物学和放射治 疗科的辐射生物学家Oleg Belyakov称: "如果给予细胞适当的条件和正确的信息,

可用于治疗烧 伤等疾病的人造表 皮、上皮。 (图/MatTek)


它们可以制作成任何东西—新的心脏、新的骨骼、几英尺长新的肠道或部分肝脏。"

原子能机构放射性同位素产品和辐射 技术科的辐射化学家Agnes Safrany称:"适 于细胞生长的适当条件是指施工架、温 度、微观环境及微观结构。正确的信息可 以是正确方向上的轻碰或轻推。例如,用 于组织工程的干细胞需要来自其他细胞的 生长信号,以使它们知道它们应该变成什

有助于神经、 血管等生长的具有 大小不同的孔的三 维心脏组织施工 架。可用于替换部 分坏死心脏的人造/工 程化心脏组织。

(图/协调研究项目 F23030和E31007)

人造气管/支气 管上皮组织系统。 (图/MatTek)

么样子,它们应该有何区别。"

施工架为细胞搭建必要的结构提供框 架──不论是血管、瓣膜、皮肤、神经、 软骨等。如果组织 施工架不是"恰 到好处",细胞将不会正确地连接,工程 组织将会死亡。

"恰到好处"的意思是施工架有一些 足够大的孔, 允许组织生成初期的细胞 迁移, 当构建神经和血管时, 这些孔则变 得小得多。

可利用辐射快速和有效地办到像这样 的改变支架工程的形状和结构,不会对施工 架内部生长的组织造成伤害。

辐射技术还有助于组织工程的其他领 域,如表面移植物、杀死细胞为其他组织 形成"培养层"以及灭菌等。

组织工程, 无论结合常规组织存储技 术与否,都具有改善医疗结果和减少未来 对经消毒供体材料的需求的可能性。

研究与开发

原子能机构有关利用辐射技术构建用 干组织工程的有益表面和施工架的协调 研究项目始于今年,预计2018年结束。该 项目正在由人体健康处和物理化学处联合

实施。

该项目涉及14个成员国,包括阿根 廷、孟加拉、巴西、埃及、马来西亚、墨 西哥、葡萄牙、斯洛伐克、土耳其和乌拉 圭,它们在该地区的能力有限,而中国、 波兰、英国和美国在组织工程学方面拥有 先进的知识和基础设施。

负责该项目的Belyakov称:"协调研 究项目是以扩大发展中成员国这样的方式 组织的, 因此我们可以利用那些是该领域 佼佼者的国家的专门知识。我们的目标是 为参与机构之间的知识和技术转让提供一 个论坛,并且有助于各学科(如化学家、 生物学家、物理学家、医药工程师和材料 学专家)之间形成网络,并且促进中低收 入成员国尽早涉足此高速发展的领域。"

国际原子能机构新闻和宣传办公室 Sasha Henriques